login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159874
Numerator of Hermite(n, 10/23).
1
1, 20, -658, -55480, 978892, 254369200, -90954680, -1616554775200, -31657485143920, 13049369914414400, 562429971828694240, -126813734257930467200, -9081834697300952909120, 1428390476192666153388800, 153479363950530629379812480, -18087732454355158476398656000
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 15 2018: (Start)
a(n) = 23^n * Hermite(n, 10/23).
E.g.f.: exp(20*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 20/23, -658/529, -55480/12167, 978892/279841,...
MATHEMATICA
Numerator[Table[HermiteH[n, 11/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 10/23], {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 10/23)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(20*x - 529*x^2))) \\ G. C. Greubel, Jul 15 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(20/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 15 2018
CROSSREFS
Cf. A009967 (denominators)
Sequence in context: A226731 A201724 A006410 * A203136 A034404 A179712
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved