login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159874 Numerator of Hermite(n, 10/23). 1
1, 20, -658, -55480, 978892, 254369200, -90954680, -1616554775200, -31657485143920, 13049369914414400, 562429971828694240, -126813734257930467200, -9081834697300952909120, 1428390476192666153388800, 153479363950530629379812480, -18087732454355158476398656000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 15 2018: (Start)
a(n) = 23^n * Hermite(n, 10/23).
E.g.f.: exp(20*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 20/23, -658/529, -55480/12167, 978892/279841,...
MATHEMATICA
Numerator[Table[HermiteH[n, 11/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 10/23], {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 10/23)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(20*x - 529*x^2))) \\ G. C. Greubel, Jul 15 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(20/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 15 2018
CROSSREFS
Cf. A009967 (denominators)
Sequence in context: A226731 A201724 A006410 * A203136 A034404 A179712
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 20:49 EDT 2024. Contains 374323 sequences. (Running on oeis4.)