|
|
A159873
|
|
Numerator of Hermite(n, 9/23).
|
|
1
|
|
|
1, 18, -734, -51300, 1406316, 242415288, -3075936456, -1594219104432, -5915558486640, 13386990447152928, 297293775958538784, -136283070963624280128, -5913000241950711410496, 1623815864599061055116160, 110556090890573183732052864, -22061950950410975041203610368
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..385
|
|
FORMULA
|
From G. C. Greubel, Jul 15 2018: (Start)
a(n) = 23^n * Hermite(n, 9/23).
E.g.f.: exp(18*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 18/23, -734/529, -51300/12167, 1406316/279841,...
|
|
MATHEMATICA
|
HermiteH[Range[0, 20], 9/23]//Numerator (* Harvey P. Dale, Aug 11 2016 *)
Table[23^n*HermiteH[n, 9/23], {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 9/23)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(18*x - 529*x^2))) \\ G. C. Greubel, Jul 15 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 15 2018
|
|
CROSSREFS
|
Cf. A009967 (denominators)
Sequence in context: A073421 A346216 A295439 * A259458 A180781 A264468
Adjacent sequences: A159870 A159871 A159872 * A159874 A159875 A159876
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|