The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159870 Numerator of Hermite(n, 6/23). 1
 1, 12, -914, -36360, 2464716, 183452112, -10836922296, -1294597074528, 64723081629840, 11734146618363072, -475483423858979616, -129853072308589057152, 3975439219167736085184, 1696319876659859502624000, -34322352500514728084132736, -25537758243092015689876280832 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..385 FORMULA From G. C. Greubel, Jul 14 2018: (Start) a(n) = 23^n * Hermite(n, 6/23). E.g.f.: exp(12*x - 529*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/23)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerators of 1, 12/23, -914/529, -36360/12167, 2464716/279841 MATHEMATICA Numerator[Table[HermiteH[n, 6/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) Table[23^n*HermiteH[n, 6/23], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 6/23)) \\ Charles R Greathouse IV, Jan 29 2016 (PARI) x='x+O('x^30); Vec(serlaplace(exp(12*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018 CROSSREFS Cf. A009967 (denominators) Sequence in context: A214313 A306642 A283570 * A283040 A229603 A203599 Adjacent sequences: A159867 A159868 A159869 * A159871 A159872 A159873 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:02 EDT 2023. Contains 365581 sequences. (Running on oeis4.)