login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159877
Numerator of Hermite(n, 12/23).
1
1, 24, -482, -62352, 33420, 264675744, 6175426056, -1531951397568, -82502038912368, 10986387695118720, 1049257719206417376, -91053796553402040576, -14396552453405934395712, 810501742160249881655808, 217462224255991218838362240, -6786058422733831994965134336
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 23^n * Hermite(n, 12/23).
E.g.f.: exp(24*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 24/23, -482/529, -62352/12167, 33420/279841, ...
MATHEMATICA
HermiteH[Range[0, 20], 12/23]//Numerator (* Harvey P. Dale, Jan 09 2017 *)
Table[23^n*HermiteH[n, 12/23], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 12/23)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(24*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(24/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
CROSSREFS
Cf. A009967 (denominators).
Sequence in context: A052725 A360517 A006548 * A319426 A275041 A109143
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved