login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269610
Number of length-7 0..n arrays with no repeated value differing from the previous repeated value by one or less.
1
14, 902, 10192, 58280, 229754, 714874, 1886252, 4405772, 9366790, 18476654, 34284584, 60459952, 102126002, 166254050, 262123204, 401850644, 600997502, 879255382, 1261218560, 1777246904, 2464424554, 3367619402, 4540648412
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: 2*x*(7 + 395*x + 1684*x^2 + 608*x^3 - 321*x^4 + 143*x^5 + 6*x^6 - 2*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..1. .4. .2. .0. .2. .1. .4. .3. .1. .3. .4. .2. .4. .3. .3. .2
..4. .1. .0. .3. .4. .3. .2. .0. .3. .4. .1. .1. .1. .1. .4. .3
..0. .3. .3. .1. .1. .0. .4. .3. .1. .4. .4. .4. .0. .1. .2. .0
..1. .2. .2. .2. .1. .4. .0. .0. .0. .3. .2. .1. .3. .0. .4. .2
..1. .0. .0. .3. .3. .2. .1. .2. .2. .1. .2. .3. .4. .3. .3. .3
..4. .1. .3. .2. .3. .3. .4. .0. .1. .1. .4. .3. .4. .0. .2. .1
..4. .3. .1. .1. .2. .2. .0. .3. .1. .3. .1. .0. .3. .3. .1. .4
CROSSREFS
Row 7 of A269606.
Sequence in context: A159871 A362998 A340259 * A115458 A241801 A337576
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved