login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337576
O.g.f. A(x) satisfies: [x^n] exp( n^2*(n+1) * x ) / A(x)^(n+1) = 0 for n > 0.
2
1, 1, 14, 947, 157190, 47437866, 22437363324, 15246207565643, 14053536511674526, 16868801353366004990, 25566893078760354005252, 47761059837097334197007118, 107843046053558916525978556156, 289613430019820775682179202404084
OFFSET
0,3
COMMENTS
It is remarkable that this sequence consists entirely of integers.
FORMULA
Given o.g.f. A(x), define B(x) = A(x/B(x)), then B(x) is the o.g.f. of A337575 and satisfies [x^n] exp( n*(n-1)^2 * x/B(x) ) = 0 for n>0.
EXAMPLE
O.g.f.: A(x) = 1 + x + 14*x^2 + 947*x^3 + 157190*x^4 + 47437866*x^5 + 22437363324*x^6 + 15246207565643*x^7 + 14053536511674526*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp( n^2*(n+1)*x ) / A(x)^(n+1) begins:
n=0: [1, -1, -26, -5520, -3723384, -5652041280, -16083171669600, ...];
n=1: [1, 0, -54, -11200, -7486872, -11338403328, -32230618603040, ...];
n=2: [1, 9, 0, -18258, -11861352, -17522277048, -49272492906432, ...];
n=3: [1, 32, 916, 0, -17438424, -25288921344, -69043257103968, ...];
n=4: [1, 75, 5490, 363500, 0, -35101453320, -94993441197200, ...];
n=5: [1, 144, 20574, 2882400, 368064576, 0, -127110906431280, ...];
n=6: [1, 245, 59836, 14528010, 3470388768, 759773089152, 0, ...];
n=7: [1, 384, 147240, 56329472, 21453513648, 8058471570432, 2785824326725888, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*(n+1)*x ) / A(x)^(n+1) = 0 for n>0.
RELATED SERIES.
Define B(x) = A(x/B(x)), which begins
B(x) = 1 + x + 13*x^2 + 907*x^3 + 153145*x^4 + 46602295*x^5 + 22140651001*x^6 + 15084920403375*x^7 + ... + A337575(n)*x^n + ...
then the table of coefficients of x^k/k! in exp( n*(n-1)^2 * x/B(x) ) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, 0, -160, -43520, -36711168, -67072065536, ...];
n=3: [1, 12, 120, 0, -293760, -234067968, -415963247616, ...];
n=4: [1, 36, 1224, 36288, 0, -792405504, -1355831322624, ...];
n=5: [1, 80, 6240, 467840, 31356160, 0, -3403785728000, ...];
n=6: [1, 150, 22200, 3229200, 456364800, 58514400000, 0, ...];
n=7: [1, 252, 63000, 15603840, 3817860480, 913835768832, 200316485182464, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)^2 * x/B(x) ) = 0 for n>0.
Also note that B(x) = x/Series_Reversion( x*A(x) ) and A(x) = B(x*A(x)).
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)^2*x +x*O(x^m)) / Ser(A)^m )[m]/m); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 02 2020
STATUS
approved