The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337458 O.g.f. A(x) satisfies: [x^n] exp( n*(n+1) * x ) / A(x)^(n+1) = 0 for n > 0. 6
 1, 1, 2, 11, 130, 2450, 63012, 2040779, 79377914, 3594766694, 185457776252, 10725423627006, 686721189003668, 48200778475446916, 3679104677398632520, 303348177377608050219, 26865664102518601306154, 2543352040870175109554654, 256296085507636954980717708, 27390678829206902911266889386 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS It is remarkable that this sequence consists entirely of integers. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA Given o.g.f. A(x), define B(x) = A(x/B(x)), then B(x) is the o.g.f. of A337457 and satisfies [x^n] exp( n*(n-1)*x/B(x) ) = 0 for n>0. a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(n - 3/2) / (sqrt(Pi) * c^n * (2-c)^(n-1) * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020 EXAMPLE O.g.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 130*x^4 + 2450*x^5 + 63012*x^6 + 2040779*x^7 + 79377914*x^8 + 3594766694*x^9 + 185457776252*x^10 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp(n*(n+1)*x) / A(x)^(n+1) begins: n=0: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...]; n=1: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...]; n=2: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...]; n=3: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...]; n=4: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...]; n=5: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...]; n=6: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...]; n=7: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n+1)*x ) / A(x)^(n+1) = 0 for n>0. RELATED SERIES. Define B(x) = A(x/B(x)), which begins B(x) = 1 + x + x^2 + 7*x^3 + 93*x^4 + 1859*x^5 + 49357*x^6 + 1629227*x^7 + 64149805*x^8 + 2929386667*x^9 + ... + A337457(n)*x^n + ... then the table of coefficients of x^k/k! in exp( n*(n-1)*x/B(x) ) begins: n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]; n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]; n=2: [1, 2, 0, -16, -320, -21888, -2648576, -494325760, ...]; n=3: [1, 6, 24, 0, -1728, -88704, -9621504, -1715198976, ...]; n=4: [1, 12, 120, 864, 0, -281088, -26873856, -4328017920, ...]; n=5: [1, 20, 360, 5600, 65920, 0, -66944000, -10207436800, ...]; n=6: [1, 30, 840, 21600, 492480, 8784000, 0, -22098355200, ...]; n=7: [1, 42, 1680, 63504, 2237760, 71229312, 1814690304, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)*x/B(x) ) = 0 for n>0. Also note that B(x) = x/Series_Reversion( x*A(x) ) and A(x) = B(x*A(x)). PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)*x +x*O(x^m)) / Ser(A)^m )[m]/m); A[n+1]} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A337457, A304319. Sequence in context: A208858 A283537 A154596 * A066382 A276030 A282855 Adjacent sequences: A337455 A337456 A337457 * A337459 A337460 A337461 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)