The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337458 O.g.f. A(x) satisfies: [x^n] exp( n*(n+1) * x ) / A(x)^(n+1) = 0 for n > 0. 6
1, 1, 2, 11, 130, 2450, 63012, 2040779, 79377914, 3594766694, 185457776252, 10725423627006, 686721189003668, 48200778475446916, 3679104677398632520, 303348177377608050219, 26865664102518601306154, 2543352040870175109554654, 256296085507636954980717708, 27390678829206902911266889386 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
It is remarkable that this sequence consists entirely of integers.
LINKS
FORMULA
Given o.g.f. A(x), define B(x) = A(x/B(x)), then B(x) is the o.g.f. of A337457 and satisfies [x^n] exp( n*(n-1)*x/B(x) ) = 0 for n>0.
a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(n - 3/2) / (sqrt(Pi) * c^n * (2-c)^(n-1) * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 130*x^4 + 2450*x^5 + 63012*x^6 + 2040779*x^7 + 79377914*x^8 + 3594766694*x^9 + 185457776252*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n*(n+1)*x) / A(x)^(n+1) begins:
n=0: [1, -1, -2, -48, -2616, -262080, -41718240, -9630270720, ...];
n=1: [1, 0, -6, -112, -5592, -547968, -86345120, -19809990912, ...];
n=2: [1, 3, 0, -222, -10728, -958824, -144971712, -32519314080, ...];
n=3: [1, 8, 52, 0, -18648, -1693248, -236690784, -50727983616, ...];
n=4: [1, 15, 210, 2420, 0, -2739720, -399251600, -80125144800, ...];
n=5: [1, 24, 558, 12192, 221184, 0, -616918320, -131299591680, ...];
n=6: [1, 35, 1204, 40278, 1272768, 33597312, 0, -196436730672, ...];
n=7: [1, 48, 2280, 106688, 4869552, 210771456, 7654459648, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n+1)*x ) / A(x)^(n+1) = 0 for n>0.
RELATED SERIES.
Define B(x) = A(x/B(x)), which begins
B(x) = 1 + x + x^2 + 7*x^3 + 93*x^4 + 1859*x^5 + 49357*x^6 + 1629227*x^7 + 64149805*x^8 + 2929386667*x^9 + ... + A337457(n)*x^n + ...
then the table of coefficients of x^k/k! in exp( n*(n-1)*x/B(x) ) begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, 0, -16, -320, -21888, -2648576, -494325760, ...];
n=3: [1, 6, 24, 0, -1728, -88704, -9621504, -1715198976, ...];
n=4: [1, 12, 120, 864, 0, -281088, -26873856, -4328017920, ...];
n=5: [1, 20, 360, 5600, 65920, 0, -66944000, -10207436800, ...];
n=6: [1, 30, 840, 21600, 492480, 8784000, 0, -22098355200, ...];
n=7: [1, 42, 1680, 63504, 2237760, 71229312, 1814690304, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)*x/B(x) ) = 0 for n>0.
Also note that B(x) = x/Series_Reversion( x*A(x) ) and A(x) = B(x*A(x)).
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)*x +x*O(x^m)) / Ser(A)^m )[m]/m); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A208858 A283537 A154596 * A066382 A276030 A282855
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 28 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)