login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple. 4
22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These are triples matching the pattern (2,1,2), (3,1,2), or (2,1,3).

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

LINKS

Table of n, a(n) for n=1..49.

Eric Weisstein's World of Mathematics, Unimodal Sequence

Gus Wiseman, Statistics, classes, and transformations of standard compositions

FORMULA

Intersection of A014311 and A335373.

EXAMPLE

The sequence together with the corresponding triples begins:

      22: (2,1,2)     296: (3,2,4)    1048: (6,1,4)

      38: (3,1,2)     304: (3,1,5)    1064: (5,2,4)

      44: (2,1,3)     352: (2,1,6)    1072: (5,1,5)

      70: (4,1,2)     518: (7,1,2)    1096: (4,3,4)

      76: (3,1,3)     524: (6,1,3)    1104: (4,2,5)

      88: (2,1,4)     532: (5,2,3)    1120: (4,1,6)

     134: (5,1,2)     536: (5,1,4)    1184: (3,2,6)

     140: (4,1,3)     552: (4,2,4)    1216: (3,1,7)

     148: (3,2,3)     560: (4,1,5)    1408: (2,1,8)

     152: (3,1,4)     592: (3,2,5)    2054: (9,1,2)

     176: (2,1,5)     608: (3,1,6)    2060: (8,1,3)

     262: (6,1,2)     704: (2,1,7)    2068: (7,2,3)

     268: (5,1,3)    1030: (8,1,2)    2072: (7,1,4)

     276: (4,2,3)    1036: (7,1,3)    2088: (6,2,4)

     280: (4,1,4)    1044: (6,2,3)    2096: (6,1,5)

MATHEMATICA

stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;

Select[Range[0, 1000], Length[stc[#]]==3&&MatchQ[stc[#], {x_, y_, z_}/; x>y<z]&]

CROSSREFS

A000212 counts unimodal triples.

A000217(n - 2) counts 3-part compositions.

A001399(n - 3) counts 3-part partitions.

A001399(n - 6) counts 3-part strict partitions.

A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.

A001399(n - 6)*4 counts unimodal 3-part strict compositions.

A001399(n - 6)*6 counts 3-part strict compositions.

A001523 counts unimodal compositions.

A001840 counts non-unimodal triples.

A059204 counts non-unimodal permutations.

A115981 counts non-unimodal compositions.

A328509 counts non-unimodal patterns.

A337459 ranks unimodal triples.

All of the following pertain to compositions in standard order (A066099):

- Length is A000120.

- Triples are A014311.

- Sum is A070939.

- Runs are counted by A124767.

- Strict compositions are A233564.

- Constant compositions are A272919.

- Heinz number is A333219.

- Non-unimodal compositions are A335373.

- Non-co-unimodal compositions are A335374.

- Strict triples are A337453.

Cf. A007304, A014612, A069905, A072706, A156040, A211540, A227038, A332743, A337461, A337604.

Sequence in context: A259736 A082261 A335373 * A063252 A078540 A057836

Adjacent sequences:  A337457 A337458 A337459 * A337461 A337462 A337463

KEYWORD

nonn

AUTHOR

Gus Wiseman, Sep 18 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 11:17 EDT 2021. Contains 346273 sequences. (Running on oeis4.)