login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109634
Number of 1's that appear among all ternary strings of length n that contain no consecutive 1's.
0
0, 1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024, 166276481024, 472876388352
OFFSET
0,3
REFERENCES
Ralph P. Grimaldi, Ternary Strings with No Consecutive 1's, Ars Combin. 89 (2008), 321-343.
FORMULA
(sqrt(3)/18)*((1+sqrt(3))^n - (1-sqrt(3))^n)+(n/12)*((1+sqrt(3))^(n+1)+(1-sqrt(3))^(n+1))
Conjecture: a(n)=A073388(n-1). [From R. J. Mathar, Aug 18 2008]
MATHEMATICA
f[n_] := Simplify[(2Sqrt[3] (-(1 - Sqrt[3])^n + (1 + Sqrt[3])^n) + 3n*((1 - Sqrt[3])^(1 + n) + (1 + Sqrt[3])^(1 + n)))/36]; Table[ f[n], {n, 0, 25}] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A340257 A261386 A073388 * A026126 A026155 A025182
KEYWORD
nonn
AUTHOR
Ralph P. Grimaldi (ralph.grimaldi(AT)rose-hulman.edu), Aug 03 2005
EXTENSIONS
More terms from Robert G. Wilson v, Aug 05 2005
STATUS
approved