OFFSET
0,2
COMMENTS
The number of contiguous signs seems to increase in proportion to the square-root of the number of terms.
Compare the g.f. to the Jacobi theta_4 series identity:
exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*x^n/n ) = 1 + 2*Sum_{n>=1} (-x)^(n^2).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2500 from Paul D. Hanna)
FORMULA
G.f.: exp( Sum_{n>=1} -(sigma_2(2*n) - sigma_2(n))*x^n/n ) where sigma_2(n) = sum of squares of divisors of n.
EXAMPLE
G.f.: A(x) = 1 - 4*x + 8*x^3 + 16*x^4 - 8*x^5 - 48*x^6 - 56*x^7 + 116*x^9 +...
where the g.f. equals the infinite product:
A(x) = (1-x)^2/(1+x)^2 * (1-x^2)^4/(1+x^2)^4 * (1-x^3)^6/(1+x^3)^6 * (1-x^4)^8/(1+x^4)^8 * (1-x^5)^10/(1+x^5)^10 *...
The logarithm of the g.f. is illustrated by:
-log(A(x)) = 4*x + 16*x^2/2 + 40*x^3/3 + 64*x^4/4 + 104*x^5/5 + 160*x^6/6 + 200*x^7/7 + 256*x^8/8 +...+ 4*A076577(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, -(sigma(2*m, 2)-sigma(m, 2))*x^m/m+x*O(x^n))), n)}
(PARI) {a(n)=polcoeff(prod(m=1, n, ((1-x^m)/(1+x^m +x*O(x^n)))^(2*m)), n)}
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 06 2012
STATUS
approved