OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies:
(1) Sum_{n>=0} (-1)^n*(2*n+1)^(2*n)*A(x)^(2*n+1)/(2*n+1)! = x.
(2) A( atan(Sw(x)/Cw(x)) ) = x where Sw(x) = Sum_{n>=0} (-1)^n*(2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!.
EXAMPLE
E.g.f.: A(x) = x + 9*x^3/3! + 185*x^5/5! + 6769*x^7/7! + 384849*x^9/9! +...
such that A(x*Cw(x)) = x where
Cw(x) = 1 - 3*x^2/2! + 125*x^4/4! - 16807*x^6/6! + 4782969*x^8/8! -+...+ (-1)^n*(2*n+1)^(2*n-1)*x^(2*n)/(2*n)! +...
Related expansion:
Sw(x) = x - 16*x^3/3! + 1296*x^5/5! - 262144*x^7/7! + 100000000*x^9/9! -+...+ (-1)^n*(2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)! +...
where Cw(x) + I*Sw(x) = LambertW(-I*x)/(-I*x).
PROG
(PARI) {a(n)=local(Cw=sum(m=0, n, (-1)^m*(2*m+1)^(2*m-1)*x^(2*m)/(2*m)!) +x*O(x^n)); n!*polcoeff(serreverse(x*Cw), n)}
for(n=1, 20, print1(a(2*n-1), ", ")) \\ print only odd-indexed terms
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2012
STATUS
approved