login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216409
E.g.f.: Series_Reversion( x*Cw(x) ) where Cw(x) = Sum_{n>=0} (-1)^n*(2*n+1)^(2*n-1)*x^(2*n)/(2*n)!.
2
1, 9, 185, 6769, 384849, 31247161, 3421948361, 485057489505, 86270172949025, 18789108183911401, 4913945007420622425, 1518613513007413125073, 547156929866111948071025, 227227144424871839232479769, 107701858026047543489146771049
OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies:
(1) Sum_{n>=0} (-1)^n*(2*n+1)^(2*n)*A(x)^(2*n+1)/(2*n+1)! = x.
(2) A( atan(Sw(x)/Cw(x)) ) = x where Sw(x) = Sum_{n>=0} (-1)^n*(2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!.
EXAMPLE
E.g.f.: A(x) = x + 9*x^3/3! + 185*x^5/5! + 6769*x^7/7! + 384849*x^9/9! +...
such that A(x*Cw(x)) = x where
Cw(x) = 1 - 3*x^2/2! + 125*x^4/4! - 16807*x^6/6! + 4782969*x^8/8! -+...+ (-1)^n*(2*n+1)^(2*n-1)*x^(2*n)/(2*n)! +...
Related expansion:
Sw(x) = x - 16*x^3/3! + 1296*x^5/5! - 262144*x^7/7! + 100000000*x^9/9! -+...+ (-1)^n*(2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)! +...
where Cw(x) + I*Sw(x) = LambertW(-I*x)/(-I*x).
PROG
(PARI) {a(n)=local(Cw=sum(m=0, n, (-1)^m*(2*m+1)^(2*m-1)*x^(2*m)/(2*m)!) +x*O(x^n)); n!*polcoeff(serreverse(x*Cw), n)}
for(n=1, 20, print1(a(2*n-1), ", ")) \\ print only odd-indexed terms
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2012
STATUS
approved