OFFSET
1,2
COMMENTS
It appears that terms are not divisible by 2 or 3.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..200
FORMULA
E.g.f.: tanh(x*Chw(x)) = tanh( Sum_{n>=0} (2*n+1)^(2*n)*x^(2*n+1)/(2*n+1)! ).
EXAMPLE
E.g.f.: A(x) = x + 7*x^3/3! + 461*x^5/5! + 84827*x^7/7! + 30648697*x^9/9! +...
such that A(x) = Shw(x)/Chw(x) = tanh(x*Chw(x)) where
Shw(x) = x + 16*x^3/3! + 1296*x^5/5! + 262144*x^7/7! + 100000000*x^9/9! +...+ (2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)! +...
Chw(x) = 1 + 3*x^2/2! + 125*x^4/4! + 16807*x^6/6! + 4782969*x^8/8! + 2357947691*x^10/10! +...+ (2*n+1)^(2*n-1)*x^(2*n)/(2*n)! +...
and Chw(x) + Shw(x) = LambertW(-x)/(-x).
MATHEMATICA
max = 28; Chw[x_] := (-ProductLog[-x] + ProductLog[x])/(2*x); Shw[x_] := -(ProductLog[-x] + ProductLog[x])/(2*x); se = Series[ Shw[x]/Chw[x], {x, 0, max}]; (CoefficientList[se, x] // DeleteCases[#, 0] &)*Range[1, max, 2]! (* Jean-François Alcover, Jun 24 2013 *)
PROG
(PARI) {a(n)=local(Chw=sum(m=0, n, (2*m+1)^(2*m-1)*x^(2*m)/(2*m)!)+x*O(x^(2*n)), Shw=sum(m=0, n, (2*m+2)^(2*m)*x^(2*m+1)/(2*m+1)!)+x*O(x^(2*n+1))); (2*n+1)!*polcoeff(Shw/Chw, 2*n+1)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=(2*n+1)!*polcoeff( tanh( sum(m=0, n, (2*m+1)^(2*m)*x^(2*m+1)/(2*m+1)!) +x*O(x^(2*n+1))), 2*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 25 2012
STATUS
approved