The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215892 a(n) = 2^n - n^k, where k is the largest integer such that 2^n >= n^k. 2
 0, 5, 0, 7, 28, 79, 192, 431, 24, 717, 2368, 5995, 13640, 29393, 0, 47551, 157168, 393967, 888576, 1902671, 3960048, 1952265, 8814592, 23788807, 55227488, 119868821, 251225088, 516359763, 344741824, 1259979967, 3221225472, 7298466623, 15635064768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..1000 FORMULA a(n) = 2^n - n^floor(n*log_n(2)), where log_n is the base-n logarithm. EXAMPLE a(2) = 2^2 - 2^2 = 0, a(3) = 2^3 - 3 = 5, a(4) = 2^4 - 4^2 = 0, a(5) = 2^5 - 5^2 = 7, a(6)..a(9) are 2^n - n^2, a(10)..a(15) are 2^n - n^3, a(16)..a(22) are 2^n - n^4, and so on. MATHEMATICA Table[2^n - n^Floor[n*Log[n, 2]], {n, 2, 35}] (* T. D. Noe, Aug 27 2012 *) PROG (Python) for n in range(2, 100):     a = 2**n     k = 0     while n**(k+1) <= a:         k += 1     print(a - n**k, end=', ') (MAGMA) [2^n - n^Floor(n*Log(n, 2)): n in [2..40]]; // Vincenzo Librandi, Jan 14 2019 CROSSREFS Cf. A000325, A024012, A024013, A024014, A024015, A024016. Cf. A024017, A024018, A024019, A024020, A024021, A024022. Cf. A060508. Sequence in context: A201417 A147666 A343071 * A200643 A200231 A124914 Adjacent sequences:  A215889 A215890 A215891 * A215893 A215894 A215895 KEYWORD nonn AUTHOR Alex Ratushnyak, Aug 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 23:31 EDT 2022. Contains 353826 sequences. (Running on oeis4.)