|
|
A200643
|
|
Decimal expansion of least x>0 satisfying 7*x^2=tan(x).
|
|
2
|
|
|
1, 5, 0, 8, 0, 6, 3, 8, 7, 5, 0, 8, 5, 6, 5, 4, 9, 9, 0, 0, 6, 8, 7, 1, 0, 4, 0, 4, 9, 4, 2, 1, 0, 1, 5, 5, 9, 2, 6, 1, 7, 9, 8, 8, 8, 2, 3, 7, 2, 4, 0, 6, 5, 2, 3, 2, 8, 7, 9, 4, 8, 7, 4, 1, 5, 0, 7, 5, 0, 7, 9, 6, 8, 6, 8, 2, 1, 4, 7, 9, 7, 9, 8, 6, 3, 5, 9, 0, 5, 9, 2, 9, 5, 6, 1, 7, 1, 8, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
x=1.50806387508565499006871040494210155926179888...
|
|
MATHEMATICA
|
a = 7; c = 0;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.51}, WorkingPrecision -> 110]
RealDigits[r] (* A200643 *)
|
|
CROSSREFS
|
Cf. A200338.
Sequence in context: A147666 A343071 A215892 * A200231 A124914 A199376
Adjacent sequences: A200640 A200641 A200642 * A200644 A200645 A200646
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Nov 20 2011
|
|
STATUS
|
approved
|
|
|
|