|
|
A200641
|
|
Decimal expansion of least x>0 satisfying 3*x^2+5=tan(x).
|
|
1
|
|
|
1, 4, 8, 4, 9, 1, 1, 7, 2, 5, 4, 2, 5, 8, 9, 4, 5, 5, 7, 9, 6, 7, 6, 2, 3, 6, 4, 1, 7, 8, 4, 7, 2, 8, 0, 8, 3, 2, 8, 1, 7, 5, 4, 7, 2, 0, 3, 6, 3, 7, 8, 2, 4, 0, 1, 7, 8, 5, 5, 8, 9, 2, 2, 1, 4, 7, 5, 8, 2, 0, 2, 7, 0, 3, 1, 1, 8, 3, 5, 3, 2, 7, 4, 8, 5, 1, 3, 0, 2, 4, 8, 3, 7, 8, 5, 6, 0, 4, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
|
|
EXAMPLE
|
x=1.484911725425894557967623641784728083281754...
|
|
MATHEMATICA
|
a = 3; c = -5;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.48, 1.49}, WorkingPrecision -> 110]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|