login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245780
Decimal expansion of (1-C_2)/e, a constant connected with two-sided generalized Fibonacci sequences, where C_2 is the Euler-Gompertz constant.
2
1, 4, 8, 4, 9, 5, 5, 0, 6, 7, 7, 5, 9, 2, 2, 0, 4, 7, 9, 1, 8, 3, 5, 9, 9, 9, 4, 7, 0, 1, 3, 3, 9, 2, 1, 8, 4, 1, 4, 7, 6, 3, 8, 3, 7, 6, 2, 4, 8, 5, 9, 6, 2, 6, 9, 2, 9, 8, 5, 8, 1, 8, 8, 6, 2, 3, 8, 9, 2, 7, 9, 7, 1, 8, 5, 7, 5, 8, 2, 5, 8, 6, 3, 4, 9, 3, 7, 0, 2, 3, 3, 1, 0, 7, 8, 2, 3, 9, 3, 7, 9
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.2 Euler-Gompertz Constant, p. 426.
LINKS
Walther Janous, Problem 1552, Crux Mathematicorum, Vol. 16, No. 6 (1990), p. 171; Solution to Problem 1552, by Richard Katz, ibid., Vol. 17, No. 7 (1991), pp. 223-224.
Peter Fishburn, Andrew Odlyzko and Fred Roberts, Two-sided generalized Fibonacci sequences, The Fibonacci Quarterly, Vol. 27, No. 4 (1989), pp. 352-361.
FORMULA
Equals 1/e + Ei(-1), where Ei is the exponential integral function.
Equals Integral_{x=0..1} exp(-1/x) dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=1..+oo} exp(-x)/x^2 dx. - Jianing Song, Oct 03 2021
Equals lim_{n->oo} (Sum_{k=1..n-1} (k/(k+1))^n)/n (Janous, 1990). - Amiram Eldar, Apr 03 2022
EXAMPLE
0.148495506775922047918359994701339218414763837624859626929858...
MATHEMATICA
$RecursionLimit = 10^4; digits = 101; m0 = 100; dm = 100; Clear[g]; g[m_] := g[m] = (Clear[a, b, f]; b[n_] := 2*n; a[n_ /; n >= m] = 0; a[1] = 1; a[2] = -1; a[n_] := -(n-1)^2; f[m] = b[m]; f[n_] := f[n] = b[n] + a[n+1]/f[n+1]; (1 - f[0])/E); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First
(* or, as verification: *) RealDigits[1/E + ExpIntegralEi[-1], 10, digits] // First
PROG
(PARI) 1/exp(1) - eint1(1, 1)[1] \\ Michel Marcus, Aug 06 2020
CROSSREFS
Cf. A073003 (C_2), A099285 (C_2 / e).
Sequence in context: A091198 A200641 A377046 * A165267 A092159 A322258
KEYWORD
nonn,cons
AUTHOR
STATUS
approved