login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245778
Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.
4
1, 672, 4680, 30240, 435708, 23569920, 45532800, 4138364160, 14182439040, 53798734080, 153003540480, 403031236608, 518666803200
OFFSET
1,2
COMMENTS
Numbers n such that A245776(n) / A245777(n) = (n / A000005(n) - A000203(n) / n) is an integer.
Sequence of integers k(n): 0, 25, 94, 311, 4031, 73652, 118571, …
Conjecture: subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(14) > 10^13. - Giovanni Resta, Jul 13 2015
The numbers 13661860101120 and 740344994887680 are also terms. - Giovanni Resta, Nov 14 2019
FORMULA
A245777(a(n)) = 1.
EXAMPLE
672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
MAPLE
select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n, integer), [$1..10^8]); # Robert Israel, Aug 03 2014
PROG
(Magma) [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
(PARI)
for(n=1, 10^8, s=n/numdiv(n); t=sigma(n)/n; if(floor(s-t)==s-t, print1(n, ", "))) \\ Derek Orr, Aug 01 2014
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Aug 01 2014
EXTENSIONS
a(8)-a(13) from Giovanni Resta, Jul 13 2015
STATUS
approved