login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245781
Decimal expansion of the infinite product of (j/Pi)*sin(Pi/j), for j >= 2, a constant similar to the Kepler-Bouwkamp constant.
1
3, 2, 8, 7, 0, 9, 6, 9, 1, 6, 8, 5, 6, 6, 3, 9, 3, 0, 3, 6, 2, 5, 9, 7, 6, 7, 0, 2, 3, 8, 3, 9, 6, 4, 3, 4, 0, 2, 0, 9, 9, 7, 6, 3, 8, 5, 5, 5, 8, 9, 8, 1, 2, 8, 8, 3, 0, 0, 3, 1, 8, 5, 4, 3, 5, 4, 7, 2, 1, 3, 5, 2, 6, 8, 4, 4, 0, 5, 9, 9, 7, 8, 9, 5, 5, 5, 3, 9, 0, 6, 2, 5, 7, 6, 7, 9, 9, 5, 6, 4, 4, 7
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.3 Kepler-Bouwkamp constant, p. 428.
FORMULA
exp( -sum_{k >= 1} zeta(2*k)*(zeta(2*k)-1)/k ).
EXAMPLE
0.32870969168566393036259767023839643402099763855589812883...
MATHEMATICA
digits = 102; Exp[-NSum[Zeta[2*k]*(Zeta[2*k]-1)/k, {k, 1, Infinity}, NSumTerms -> 200, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
CROSSREFS
Cf. A085365.
Sequence in context: A132887 A364317 A092174 * A239803 A083514 A123696
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved