Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Aug 01 2014 11:19:41
%S 3,2,8,7,0,9,6,9,1,6,8,5,6,6,3,9,3,0,3,6,2,5,9,7,6,7,0,2,3,8,3,9,6,4,
%T 3,4,0,2,0,9,9,7,6,3,8,5,5,5,8,9,8,1,2,8,8,3,0,0,3,1,8,5,4,3,5,4,7,2,
%U 1,3,5,2,6,8,4,4,0,5,9,9,7,8,9,5,5,5,3,9,0,6,2,5,7,6,7,9,9,5,6,4,4,7
%N Decimal expansion of the infinite product of (j/Pi)*sin(Pi/j), for j >= 2, a constant similar to the Kepler-Bouwkamp constant.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.3 Kepler-Bouwkamp constant, p. 428.
%F exp( -sum_{k >= 1} zeta(2*k)*(zeta(2*k)-1)/k ).
%e 0.32870969168566393036259767023839643402099763855589812883...
%t digits = 102; Exp[-NSum[Zeta[2*k]*(Zeta[2*k]-1)/k, {k, 1, Infinity}, NSumTerms -> 200, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
%Y Cf. A085365.
%K nonn,cons,easy
%O 0,1
%A _Jean-François Alcover_, Aug 01 2014