login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245776
Numerator of (n/tau(n) - sigma(n)/n).
5
0, -1, 1, -5, 13, -1, 33, 1, 14, 7, 97, -1, 141, 25, 43, 101, 253, 5, 321, 37, 313, 85, 481, 1, 532, 127, 569, 8, 781, 27, 897, 323, 299, 235, 1033, 53, 1293, 301, 1297, 11, 1597, 83, 1761, 179, 173, 457, 2113, 133, 2230, 971, 771, 529, 2701, 163, 2737, 34, 2929, 751, 3361, 11, 3597, 865, 1115
OFFSET
1,4
COMMENTS
Numerator of (n/A000005(n) - A000203(n)/n).
See A245777 - denominator of (n/tau(n) - sigma(n)/n).
LINKS
FORMULA
a(n)/A245777(n) < 1 for numbers n in A245779.
a(n)/A245777(n) is an integer for numbers n in A245778.
a(n) = 1 for n = 3, 8 and 24.
a(n) < 0 for n = 2, 4, 6 and 12.
EXAMPLE
For n = 9; a(9) = numerator(9/tau(9) - sigma(9)/9) = numerator(9/3 - 13/9) = numerator(14/9) = 14.
MATHEMATICA
a245776[n_Integer] :=
Map[Numerator[#/DivisorSigma[0, #] - DivisorSigma[1, #]/#] &,
Range[n]]; a245776[63] (* Michael De Vlieger, Aug 07 2014 *)
PROG
(Magma) [Numerator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n)): n in [1..1000]]
(PARI) vector(150, n, numerator(n/numdiv(n) - sigma(n)/n)) \\ Derek Orr, Aug 01 2014
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Jaroslav Krizek, Aug 01 2014
STATUS
approved