login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245774
Numbers k that divide 3*sigma(k).
3
1, 3, 6, 12, 28, 84, 120, 234, 270, 496, 672, 1080, 1488, 1638, 6048, 6552, 8128, 24384, 30240, 32760, 35640, 199584, 435708, 523776, 2142720, 2178540, 4713984, 12999168, 18506880, 23569920, 33550336, 36197280, 45532800
OFFSET
1,2
COMMENTS
Numbers k that divide 3*A000203(k).
Supersequence of A007691 and A245775.
Union of A007691 and 3*A227303. - Robert Israel, Aug 26 2014
EXAMPLE
Number 12 is in the sequence because 12 divides 3*sigma(12) = 3*28.
MAPLE
select(n -> 3*numtheory:-sigma(n) mod n = 0, [$1..10^6]); # Robert Israel, Aug 26 2014
MATHEMATICA
a245774[n_Integer] := Select[Range[n], Divisible[3*DivisorSigma[1, #], #] == True &]; a245774[10^7] (* Michael De Vlieger, Aug 27 2014 *)
PROG
(Magma) [n: n in [1..3000000] | Denominator(3*(SumOfDivisors(n))/n) eq 1]
(PARI)
for(n=1, 10^9, if((3*sigma(n))%n==0, print1(n, ", "))) \\ Derek Orr, Aug 26 2014
CROSSREFS
Cf. A000203 (sum of divisors), A007691 (multiply-perfect numbers).
Cf. A227303 (n divides sigma(3n)), A245775 (denominator(sigma(n)/n) = 3).
Cf. A272027 (3*sigma(n)).
Sequence in context: A292290 A018011 A025208 * A369148 A049941 A219634
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 26 2014
STATUS
approved