

A219634


a(n) is the smallest number > a(n1) such that 1 + a(1)^2 + a(2)^2 + ... + a(n)^2 is a prime.


1



1, 3, 6, 12, 30, 54, 60, 72, 120, 126, 144, 174, 198, 210, 294, 300, 318, 354, 408, 420, 426, 432, 480, 498, 522, 564, 588, 594, 600, 624, 630, 648, 666, 714, 720, 852, 864, 978, 1002, 1050, 1056, 1080, 1098, 1122, 1146, 1152, 1170, 1176, 1200, 1206, 1458
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The corresponding primes are 2, 11, 47, 191, 1091, 4007, 7607, 12791, 27191, 43067, ...


LINKS



EXAMPLE

a(1) = 1 because 1 + 1^2 = 2 is prime;
a(2) = 3 because 1 + 1^2 + 2^2 = 6 is not prime, but 1 + 1^2 + 3^2 = 11 is prime;
a(3) = 6 because neither 1 + 1^2 + 3^2 + 4^2 = 27 nor 1 + 1^2 + 3^2 + 5^2 = 36 is prime, but 1 + 1^2 + 3^2 + 6^2 = 47 is prime.


MATHEMATICA

p=1; lst={p}; Do[If[PrimeQ[p+n^2], AppendTo[lst, n]; p=p+n^2], {n, 1, 1500}]; lst


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



