The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A288147 Number of Dyck paths of semilength n such that the number of peaks is strongly increasing from lower to higher levels and no positive level is peakless. 4
 1, 1, 1, 1, 3, 6, 12, 31, 68, 186, 506, 1299, 3481, 9712, 27692, 79587, 232743, 694896, 2086245, 6248158, 18771510, 57007483, 175149700, 542313513, 1688360997, 5288335561, 16679137617, 52933231538, 168768966207, 539981776609, 1733555552587, 5587076558809 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Wikipedia, Counting lattice paths EXAMPLE a(5) = 6: /\ /\ /\ /\ /\/\/\/\/\ /\/ \/ \ / \/\/ \ . /\ /\ /\/\/\ /\/\/\ / \/ \/\ /\/ \ / \/\ MAPLE b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add( b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t), t=max(1, i-j)..min(k-1, n-j, i-1)), i=1..n-j)) end: a:= n-> `if`(n=0, 1, add(b(n, k\$2), k=1..n)): seq(a(n), n=0..34); MATHEMATICA b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[1, i - j], Min[k - 1, n - j, i - 1]}], {i, 1, n - j}]]; a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 29 2018, from Maple *) CROSSREFS Cf. A000108, A008930, A048285, A288140, A288141, A288146. Sequence in context: A049941 A219634 A252696 * A026079 A066710 A033648 Adjacent sequences: A288144 A288145 A288146 * A288148 A288149 A288150 KEYWORD nonn AUTHOR Alois P. Heinz, Jun 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 05:10 EDT 2024. Contains 374441 sequences. (Running on oeis4.)