OFFSET
1,2
COMMENTS
If d are divisors of n then values of sequence a(n) are the bending moments at point 0 of static forces of sizes sigma(d) operating in places d on the cantilever as the nonnegative number axis of length n with support at point 0 by the schema: a(n) = n*sigma(n) - Sum_{(d<n)|n} d*sigma(d).
Sequence of numbers n such that a(n) = a(k) has solution for distinct numbers n and k: 314, 329, 411, 427, ...
LINKS
Jaroslav Krizek, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
For n=6 with divisors [1,2,3,6] we have: a(6) = 6*sigma(6)-(3*sigma(3)+2*sigma(2)+1*sigma(1)) = 6*12-(3*4+2*3+1*1) = 53.
MAPLE
a:= proc(n) n * sigma(n) - add(d*sigma(d), d = divisors(n) minus {n}) end proc:
seq(a(n), n=1..100); # Robert Israel, Aug 17 2014
MATHEMATICA
a245773[n_Integer] := n*DivisorSigma[1, n] - Total[#*DivisorSigma[1, #] & /@ Most[Divisors[n]]]; a245773 /@ Range[50] (* Michael De Vlieger, Aug 17 2014 *)
PROG
(Magma) [(2*n*SumOfDivisors(n)-(&+[d*SumOfDivisors(d): d in Divisors(n)])): n in [1..1000]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 16 2014
STATUS
approved