login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245773
a(n) = n*sigma(n) - Sum_{(d<n)|n} d*sigma(d).
2
1, 5, 11, 21, 29, 53, 55, 85, 104, 143, 131, 217, 181, 273, 317, 341, 305, 494, 379, 595, 603, 653, 551, 865, 744, 903, 950, 1141, 869, 1499, 991, 1365, 1439, 1523, 1593, 2002, 1405, 1893, 1989, 2395, 1721, 2877, 1891, 2737, 2990, 2753, 2255, 3441, 2736, 3658
OFFSET
1,2
COMMENTS
If d are divisors of n then values of sequence a(n) are the bending moments at point 0 of static forces of sizes sigma(d) operating in places d on the cantilever as the nonnegative number axis of length n with support at point 0 by the schema: a(n) = n*sigma(n) - Sum_{(d<n)|n} d*sigma(d).
Sequence of numbers n such that a(n) = a(k) has solution for distinct numbers n and k: 314, 329, 411, 427, ...
LINKS
FORMULA
a(n) = 2*A064987(n) - A001001(n) = 2*n*sigma(n) - Sum_{d|n} d*sigma(d).
a(n) = A064987(n) - A245484(n).
a(n) > 1 for all n >= 1.
EXAMPLE
For n=6 with divisors [1,2,3,6] we have: a(6) = 6*sigma(6)-(3*sigma(3)+2*sigma(2)+1*sigma(1)) = 6*12-(3*4+2*3+1*1) = 53.
MAPLE
a:= proc(n) n * sigma(n) - add(d*sigma(d), d = divisors(n) minus {n}) end proc:
seq(a(n), n=1..100); # Robert Israel, Aug 17 2014
MATHEMATICA
a245773[n_Integer] := n*DivisorSigma[1, n] - Total[#*DivisorSigma[1, #] & /@ Most[Divisors[n]]]; a245773 /@ Range[50] (* Michael De Vlieger, Aug 17 2014 *)
PROG
(Magma) [(2*n*SumOfDivisors(n)-(&+[d*SumOfDivisors(d): d in Divisors(n)])): n in [1..1000]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Aug 16 2014
STATUS
approved