login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k that divide 3*sigma(k).
3

%I #27 Sep 08 2022 08:46:09

%S 1,3,6,12,28,84,120,234,270,496,672,1080,1488,1638,6048,6552,8128,

%T 24384,30240,32760,35640,199584,435708,523776,2142720,2178540,4713984,

%U 12999168,18506880,23569920,33550336,36197280,45532800

%N Numbers k that divide 3*sigma(k).

%C Numbers k that divide 3*A000203(k).

%C Supersequence of A007691 and A245775.

%C Union of A007691 and 3*A227303. - _Robert Israel_, Aug 26 2014

%e Number 12 is in the sequence because 12 divides 3*sigma(12) = 3*28.

%p select(n -> 3*numtheory:-sigma(n) mod n = 0, [$1..10^6]); # _Robert Israel_, Aug 26 2014

%t a245774[n_Integer] := Select[Range[n], Divisible[3*DivisorSigma[1, #], #] == True &]; a245774[10^7] (* _Michael De Vlieger_, Aug 27 2014 *)

%o (Magma) [n: n in [1..3000000] | Denominator(3*(SumOfDivisors(n))/n) eq 1]

%o (PARI)

%o for(n=1,10^9,if((3*sigma(n))%n==0,print1(n,", "))) \\ _Derek Orr_, Aug 26 2014

%Y Cf. A000203 (sum of divisors), A007691 (multiply-perfect numbers).

%Y Cf. A227303 (n divides sigma(3n)), A245775 (denominator(sigma(n)/n) = 3).

%Y Cf. A272027 (3*sigma(n)).

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Aug 26 2014