login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024014
2^n-n^4.
4
1, 1, -12, -73, -240, -593, -1232, -2273, -3840, -6049, -8976, -12593, -16640, -20369, -22032, -17857, 0, 47551, 157168, 393967, 888576, 1902671, 3960048, 8108767, 16445440, 33163807, 66651888, 133686287, 267820800, 536163631, 1072931824
OFFSET
0,3
FORMULA
G.f.: (1-6*x+x^2+x^3+26*x^4+x^5) / ((1-2*x)*(1-x)^5). - Vincenzo Librandi, Oct 06 2014
a(n) = 7*a(n-1) -20*a(n-2) +30*a(n-3) -25*a(n-4) +11*a(n-5) -2*a(n-6) for n>5. - Vincenzo Librandi, Oct 06 2014
E.g.f.: exp(2*x) - (x + 7*x^2 + 6*x^3 + x^4)* exp(x). - Robert Israel, Oct 06 2014
MAPLE
seq(2^n-n^4, n=0..100); # Robert Israel, Oct 06 2014
MATHEMATICA
Table[2^n-n^4, {n, 0, 100}]
CoefficientList[Series[(1 - 6 x + x^2 + x^3 + 26 x^4 + x^5)/((1 - 2 x) (1 - x)^5), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 06 2014 *)
PROG
(Magma) [2^n-n^4: n in [0..30]]; // Vincenzo Librandi, Apr 29 2011
(Magma) I:=[1, 1, -12, -73, -240, -593]; [n le 6 select I[n] else 7*Self(n-1)-20*Self(n-2)+30*Self(n-3)-25*Self(n-4)+11*Self(n-5)-2*Self(n-6): n in [1..35]]; // Vincenzo Librandi, Oct 06 2014
CROSSREFS
Cf. sequences of the form k^n-n^4: this sequence (k=2), A024027 (k=3), A024040 (k=4), A024053 (k=5), A024066 (k=6), A024079 (k=7), A024092 (k=8), A024105 (k=9), A024118 (k=10), A024131 (k=11), A024144 (k=12).
Sequence in context: A120793 A120783 A103475 * A069039 A156196 A041270
KEYWORD
sign,easy
AUTHOR
STATUS
approved