The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069039 Expansion of g.f. x*(1+x)^5/(1-x)^7. 14
0, 1, 12, 73, 304, 985, 2668, 6321, 13504, 26577, 48940, 85305, 142000, 227305, 351820, 528865, 774912, 1110049, 1558476, 2149033, 2915760, 3898489, 5143468, 6704017, 8641216, 11024625, 13933036, 17455257, 21690928, 26751369, 32760460, 39855553, 48188416, 57926209 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Figurate numbers based on the 6-dimensional regular convex polytope called the 6-dimensional cross-polytope, or 6-dimensional hyperoctahedron, which is represented by the Schlaefli symbol {3, 3, 3, 3, 4}. It is the dual of the 6-dimensional hypercube. Kim asserts that every nonnegative integer can be represented by the sum of no more than 19 of these 6-crosspolytope numbers. - Jonathan Vos Post, Nov 16 2004
Starting with 1 = binomial transform of [1, 11, 50, 120, 160, 112, 32, 0, 0, 0, ...] where (1, 11, 50, 120, 160, 112, 32) = row 6 of the Chebyshev triangle A081277. Also = row 6 of the array in A142978. - Gary W. Adamson, Jul 19 2008
REFERENCES
H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 240.
Jonathan Vos Post, "4-Dimensional Jonathan numbers: polytope numbers and Centered polytope numbers of Higher Than 3 Dimensions", Draft 1.5 of 9 a.m., 12 March 2004, circulated by e-mail.
LINKS
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
FORMULA
Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = (n^2)*(2*n^4 + 20*n^2 + 23 )/45. - Jonathan Vos Post, Nov 16 2004
From Stephen Crowley, Jul 14 2009: (Start)
Sum_{n >= 1} 1/a(n) = -5*(Sum(_alpha*(77*_alpha^2+655)*Psi(1-_alpha), _alpha = RootOf(2*_Z^4+20*_Z^2+23)))*(1/3174)+15*Pi^2*(1/46)=1.10203455013915915542552577192042916250524...
Sum_{n>=1} 1/(a(n)*n!) = hypergeom([1, 1, 1, 1-a, 1+b, 1-b, 1+a], [2, 2, 2, 2+b, 2-b, 2+a, 2-a], 1) = 1.04409584723862654376639417281585634150689... where a = (i/2)*sqrt(20+6*sqrt(6)), b = (i/2)*sqrt(20-6*sqrt(6)), and i = sqrt(-1). (End)
a(n) = 12*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
E.g.f.: exp(x)*x*(45 + 225*x + 300*x^2 + 150*x^3 + 30*x^4 + 2*x^5)/45. - Stefano Spezia, Mar 10 2024
MAPLE
al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(6, n), n=0..100)];
MATHEMATICA
a[n_] := n^2*(2*n^4 + 20*n^2 + 23)/45; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 29 2014 *)
CoefficientList[Series[x (1+x)^5/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 1, 12, 73, 304, 985, 2668}, 40] (* Harvey P. Dale, Aug 05 2018 *)
PROG
(PARI) x='x+O('x^100); concat(0, Vec(x*(1+x)^5/(1-x)^7)) \\ Altug Alkan, Dec 14 2015
CROSSREFS
Similar sequence: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A099193 (m=7), A099195 (m=8), A099196 (m=9), A099197 (m=10).
Cf. A000332.
Sequence in context: A120783 A103475 A024014 * A156196 A041270 A055912
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 03 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)