login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069039 Expansion of x(1+x)^5/(1-x)^7. 13
0, 1, 12, 73, 304, 985, 2668, 6321, 13504, 26577, 48940, 85305, 142000, 227305, 351820, 528865, 774912, 1110049, 1558476, 2149033, 2915760, 3898489, 5143468, 6704017, 8641216, 11024625, 13933036, 17455257, 21690928, 26751369, 32760460 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Figurate numbers based on the 6-dimensional regular convex polytope called the 6-dimensional cross-polytope, or 6-dimensional hyperoctahedron, which is represented by the Schlaefli symbol {3, 3, 3, 3, 4}. It is the dual of the 6-dimensional hypercube. Kim asserts that every nonnegative integer can be represented by the sum of no more than 19 of these 6-crosspolytope numbers. - Jonathan Vos Post, Nov 16 2004

Starting with 1 = binomial transform of [1, 11, 50, 120, 160, 112, 32, 0, 0, 0, ...] where (1, 11, 50, 120, 160, 112, 32) = row 6 of the Chebyshev triangle A081277. Also = row 6 of the array in A142978. - Gary W. Adamson, Jul 19 2008

REFERENCES

H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 240.

Jonathan Vos Post, "4-Dimensional Jonathan numbers: polytope numbers and Centered polytope numbers of Higher Than 3 Dimensions", Draft 1.5 of 9 a.m., 12 March 2004, circulated by e-mail.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.

Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.

Jonathan Vos Post, Table of polytope numbers, Sorted, Through 1,000,000.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).

a(n) = (n^2)*(2*n^4 + 20*n^2 + 23 )/45. - Jonathan Vos Post, Nov 16 2004

From Stephen Crowley, Jul 14 2009: (Start)

Sum_{n >= 1} 1/a(n) = -5*(Sum(_alpha*(77*_alpha^2+655)*Psi(1-_alpha), _alpha = RootOf(2*_Z^4+20*_Z^2+23)))*(1/3174)+15*Pi^2*(1/46)=1.10203455013915915542552577192042916250524...

Sum_{n>=1} 1/(a(n)*n!) = hypergeom([1, 1, 1, 1-a, 1+b, 1-b, 1+a], [2, 2, 2, 2+b, 2-b, 2+a, 2-a], 1) = 1.04409584723862654376639417281585634150689... where a = (i/2)*sqrt(20+6*sqrt(6)), b = (i/2)*sqrt(20-6*sqrt(6)), and i = sqrt(-1). (End)

a(n) = 12*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

MAPLE

al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(6, n), n=0..100)];

MATHEMATICA

a[n_] := n^2*(2*n^4 + 20*n^2 + 23)/45; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 29 2014 *)

CoefficientList[Series[x (1+x)^5/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 1, 12, 73, 304, 985, 2668}, 40] (* Harvey P. Dale, Aug 05 2018 *)

PROG

(PARI) x='x+O('x^100); concat(0, Vec(x*(1+x)^5/(1-x)^7)) \\ Altug Alkan, Dec 14 2015

CROSSREFS

Similar sequence: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A099193 (m=7), A099195 (m=8), A099196 (m=9), A099197 (m=10).

Cf. A000332.

Cf. A081277, A142978.

Sequence in context: A120783 A103475 A024014 * A156196 A041270 A055912

Adjacent sequences: A069036 A069037 A069038 * A069040 A069041 A069042

KEYWORD

nonn,easy

AUTHOR

Vladeta Jovovic, Apr 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 07:59 EST 2022. Contains 358605 sequences. (Running on oeis4.)