login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024019
2^n-n^9.
2
1, 1, -508, -19675, -262128, -1953093, -10077632, -40353479, -134217472, -387419977, -999998976, -2357945643, -5159776256, -10604491181, -20661030400, -38443326607, -68719411200, -118587745425, -198359028224, -322687173491, -511998951424, -794277949429
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-65,210,-450,672,-714,540,-285,100,-21,2).
FORMULA
G.f.: (1 -11*x -455*x^2 -13724*x^3 -58808*x^4 +20026*x^5 + 224356*x^6 +161740*x^7 +28759*x^8 +993*x^9 +3*x^10) / ((1-2*x)*(1-x)^10). - Vincenzo Librandi, Oct 08 2014
a(n) = 12*a(n-1) -65*a(n-2) +210*a(n-3) -450*a(n-4) +672*a(n-5) -714*a(n-6) +540*a(n-7) -285*a(n-8) +100*a(n-9) -21*a(n-10) +2*a(n-11) for n>10. - Vincenzo Librandi, Oct 08 2014
MATHEMATICA
Table[2^n - n^8, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 11 x - 455 x^2 - 13724 x^3 - 58808 x^4 + 20026 x^5 + 224356 x^6 + 161740 x^7 + 28759 x^8 + 993 x^9 + 3 x^10)/((1 - 2 x) (1 - x)^10), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 08 2014 *)
PROG
(Magma) [2^n-n^9: n in [0..30]]; // Vincenzo Librandi, Apr 30 2011
(Magma) I:=[1, 1, -508, -19675, -262128, -1953093, -10077632, -40353479, -134217472, -387419977, -999998976]; [n le 11 select I[n] else 12*Self(n -1)-65*Self(n-2)+210*Self(n-3)-450*Self(n-4)+672*Self(n-5)-714*Self(n -6)+540*Self(n-7)-285*Self(n-8)+100*Self(n-9)-21*Self(n-10)+2*Self(n -11): n in [1..35]]; // Vincenzo Librandi, Oct 08 2014
CROSSREFS
Cf. sequences of the form k^n-n^9: this sequence (k=2), A024032 (k=3), A024045 (k=4), A024058 (k=5), A024071 (k=6), A024084 (k=7), A024097 (k=8), A024110 (k=9), A024123 (k=10), A024136 (k=11), A024149 (k=12).
Sequence in context: A028685 A152524 A236004 * A159686 A198195 A142819
KEYWORD
sign,easy
AUTHOR
STATUS
approved