login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215882 Expansion of e.g.f.: -LambertW(-x) / LambertW(x). 5
1, 2, 4, 26, 160, 2002, 21184, 395866, 5980160, 149083874, 2933576704, 91549564570, 2222207205376, 83345185392562, 2407376957456384, 105482963294851418, 3534260251308064768, 177194291803516980418, 6757029862401745616896, 381514700506253250858778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: exp( Sum_{n>=0} 2*(2*n+1)^(2*n) * x^(2*n+1)/(2*n+1)! ).

a(n) = Sum_{k=0..n} -(-1)^k*C(n,k) * (k-1)^(k-1) * (n-k+1)^(n-k-1).

a(n) ~ c * n^(n-1), where c = (1-LambertW(exp(-1))^2)/LambertW(exp(-1)) = 3.31265693390754834... if n is even and c = (1+LambertW(exp(-1))^2)/ LambertW(exp(-1)) = 3.86958601942969593... if n is odd. - Vaclav Kotesovec, Nov 27 2012

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 26*x^3/3! + 160*x^4/4! + 2002*x^5/5! +... such that A(x) = -LambertW(-x)/LambertW(x) where LambertW(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 625*x^5/5! - 7776*x^6/6! + 117649*x^7/7! - 2097152*x^8/8! +...+ (-n)^(n-1)*x^n/n! +... .

Related expansions: log(A(x)) = 2*x + 18*x^3/3! + 1250*x^5/5! + 235298*x^7/7! + 86093442*x^9/9! +...+ 2*(2*n+1)^(2*n)*x^(2*n+1)/(2*n+1)! +...

MAPLE

a:=series(-LambertW(-x)/LambertW(x), x=0, 20): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

CoefficientList[Series[-LambertW[-x]/LambertW[x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)

PROG

(PARI) {a(n)=local(LW=sum(m=1, n+1, -(-1)^m*m^(m-1)*x^m/m!)+x^2*O(x^n)); n!*polcoeff(sqrt(-subst(LW, x, -x)/LW), n)}

(PARI) {a(n)=n!*polcoeff(exp(sum(m=0, n, 2*(2*m+1)^(2*m)*x^(2*m+1)/ (2*m+1)!)+x*O(x^n)), n)}

(PARI) {a(n)=sum(k=0, n, -(-1)^k*binomial(n, k)*(k-1)^(k-1)*(n-k+1)^(n-k-1))}

for(n=0, 21, print1(a(n), ", "))

(PARI) x='x+O('x^30); Vec(serlaplace(-lambertw(-x)/lambertw(x))) \\ G. C. Greubel, Feb 19 2018

(GAP) List([0..20], n->Sum([0..n], k->-(-1)^k*Binomial(n, k)*(k-1)^(k-1)*(n-k+1)^(n-k-1))); # Muniru A Asiru, Feb 20 2018

CROSSREFS

Cf. A215880, A215881, A138737, A215890.

Sequence in context: A087404 A009237 A019019 * A032328 A019034 A091759

Adjacent sequences:  A215879 A215880 A215881 * A215883 A215884 A215885

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:01 EST 2021. Contains 349437 sequences. (Running on oeis4.)