login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215879
Written in base 3, n ends in a(n) consecutive nonzero digits.
7
0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 4, 4, 0, 4, 4, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 0, 3, 3, 0, 3
OFFSET
0,5
COMMENTS
Somehow complementary to A007949, the 3-adic valuation of n.
The base 2 analog of this sequence essentially coincides with the 2-adic valuation A007814 (up to a shift in the index).
One gets back the same sequence by concatenation of the pattern (0,1,1) successively multiplied by a(n)+1 = 1, 2, 2, 1, 3, 3, ... for n = 0, 1, 2, 3, 4, 5, .... This is equivalent to the formula (a(n)+1)*(0, 1, 1) = a(3n, 3n+1, 3n+2). - M. F. Hasler, Aug 26 2012, corrected Aug 23 2022
a(A008585(n)) = 0; a(A001651(n)) > 0. - Reinhard Zumkeller, Dec 28 2012
LINKS
FORMULA
a(3^(t+1)*k+m) = t for 3^t > m > 3^(t-1).
a(3n) = 0, a(3n+1) = a(3n+2) = a(n)+1. - M. F. Hasler, Aug 26 2012, corrected thanks to a remark from Jianing Song, Aug 23 2022
EXAMPLE
The numbers 0, 1, 2, 3, 4, 5, 6, 7 are written in base 3 as 0, 1, 2, 10, 11, 12, 20, 21 and thus end in a(0..7) = 0, 1, 1, 0, 2, 2, 0, 2 nonzero digits.
MATHEMATICA
cnzd[n_]:=Module[{idn3=IntegerDigits[n, 3], len}, len=Length[idn3]; Which[ idn3[[len]] == 0, 0, Position[idn3, 0]=={}, len, True, len-Position[idn3, 0] [[-1, 1]]]]; Array[cnzd, 110, 0] (* Harvey P. Dale, Jun 07 2016 *)
PROG
(PARI) A215879(n, b=3)=n=divrem(n, b); for(c=0, oo, n[2]||return(c); n=divrem(n[1], b))
(PARI) a(n)=my(k); while(n%3, n\=3; k++); k \\ Charles R Greathouse IV, Sep 26 2013
(Haskell)
a215879 n = if t == 0 then 0 else a215879 n' + 1
where (n', t) = divMod n 3
-- Reinhard Zumkeller, Dec 28 2012
(Python)
def A215879(n):
c = 0
while (a:=divmod(n, 3))[1]:
c += 1
n = a[0]
return c # Chai Wah Wu, Oct 15 2022
CROSSREFS
The base-4, base-5 and base-10 analogs of this sequence are given in A215883, A215884 and A215887.
Cf. A007089.
Sequence in context: A352557 A229723 A258040 * A114700 A353768 A140666
KEYWORD
nonn,base,nice
AUTHOR
M. F. Hasler, Aug 25 2012
STATUS
approved