login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258040
Expansion of f(x) / f(-x) in powers of x where f() is the g.f. for A007325.
1
1, -2, 2, 0, -2, 2, 0, 0, -2, 2, 2, -8, 8, 0, -8, 8, -2, 0, -6, 8, 6, -24, 24, 0, -24, 22, -4, 0, -16, 20, 16, -64, 62, 0, -60, 56, -10, 0, -40, 48, 38, -148, 144, 0, -136, 126, -24, 0, -88, 106, 82, -320, 308, 0, -288, 264, -48, 0, -180, 216, 168, -652, 624
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x, -x^4) * f(-x^2, +x^3) / (f(+x, -x^4) * f(-x^2, -x^3)) = f(-x, -x^9) * f(+x^3, +x^7) / (f(+x, +x^9) * f(-x^3, -x^7)) in powers of x where f(,) is the Ramanujan general theta function.
Euler transform of period 20 sequence [ -2, 1, 2, 0, 0, -1, 2, 0, -2, 0, -2, 0, 2, -1, 0, 0, 2, 1, -2, 0, ...].
a(10*n + 3) = a(10*n + 7) = 0.
EXAMPLE
G.f. = 1 - 2*x + 2*x^2 - 2*x^4 + 2*x^5 - 2*x^8 + 2*x^9 + 2*x^10 - 8*x^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[(1 - x^k)^{ 2, -1, -2, 0, 0, 1, -2, 0, 2, 0, 2, 0, -2, 1, 0, 0, -2, -1, 2, 0}[[ Mod[k, 20, 1]]], {k, 1, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^ [ 0, 2, -1, -2, 0, 0, 1, -2, 0, 2, 0, 2, 0, -2, 1, 0, 0, -2, -1, 2][k%20 + 1]) , n))};
CROSSREFS
Cf. A007325.
Sequence in context: A214665 A352557 A229723 * A215879 A114700 A353768
KEYWORD
sign
AUTHOR
Michael Somos, May 16 2015
STATUS
approved