login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258038 Numbers prime(k) such that D(prime(k), k-1) < 0, where D( * , k-1) = (k-1)-st difference. 4
7, 13, 19, 29, 37, 43, 59, 67, 73, 83, 97, 107, 113, 131, 139, 151, 163, 179, 191, 197, 211, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 523, 547, 563, 571, 587, 599, 607 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Partition of the positive integers:  A258036, A258037;

Corresponding partition of the primes: A258038, A258039.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

D(prime(k), k-1) = sum{(-1)^i prime(k-i)*C(k-i),i); i = 0..k-1}

EXAMPLE

D(prime(2), 1) = 3 - 2 > 0;

D(prime(3), 2) = 5 - 2*3 + 2 > 0;

D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0, so a(1) = prime(4) = 7;

MATHEMATICA

u = Table[Prime[Range[k]], {k, 1, 1000}];

v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];

w1 = Flatten[Position[v, -1]] (* A258036 *)

w2 = Flatten[Position[v, 1]]  (* A258037 *)

p1 = Prime[w1]  (* A258038 *)

p2 = Prime[w2]  (* A258039 *)

CROSSREFS

Cf. A258036, A258037, A258039.

Sequence in context: A211431 A299928 A096452 * A059647 A059310 A299929

Adjacent sequences:  A258035 A258036 A258037 * A258039 A258040 A258041

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jun 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 04:38 EDT 2020. Contains 336368 sequences. (Running on oeis4.)