login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258039
Numbers prime(k) such that D(prime(k), k-1) > 0, where D( * , k-1) = (k-1)-st difference.
4
2, 3, 5, 11, 17, 23, 31, 41, 47, 53, 61, 71, 79, 89, 101, 103, 109, 127, 137, 149, 157, 167, 173, 181, 193, 199, 227, 233, 241, 257, 269, 277, 283, 307, 313, 331, 347, 353, 367, 379, 389, 401, 419, 431, 439, 449, 461, 467, 487, 499, 509, 541, 557, 569, 577
OFFSET
1,1
COMMENTS
Partition of the positive integers: A258036, A258037;
Corresponding partition of the primes: A258038, A258039.
LINKS
FORMULA
D(prime(k), k-1) = Sum_{i=0..k-1} (-1)^i*prime(k-i)*binomial(k-1,i). [corrected by Jason Yuen, Nov 13 2024]
a(n) = prime(A258037(n)). - Jason Yuen, Nov 13 2024
EXAMPLE
D(prime(2), 1) = 3 - 2 > 0, so a(1) = prime(1) = 2;
D(prime(3), 2) = 5 - 2*3 + 2 > 0, so a(2) = prime(2) = 3;
D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0.
MATHEMATICA
u = Table[Prime[Range[k]], {k, 1, 1000}];
v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];
w1 = Flatten[Position[v, -1]] (* A258036 *)
w2 = Flatten[Position[v, 1]] (* A258037 *)
p1 = Prime[w1] (* A258038 *)
p2 = Prime[w2] (* A258039 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 05 2015
STATUS
approved