login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258039 Numbers prime(k) such that D(prime(k), k-1) > 0, where D( * , k-1) = (k-1)-st difference. 4
2, 3, 5, 11, 17, 23, 31, 41, 47, 53, 61, 71, 79, 89, 101, 103, 109, 127, 137, 149, 157, 167, 173, 181, 193, 199, 227, 233, 241, 257, 269, 277, 283, 307, 313, 331, 347, 353, 367, 379, 389, 401, 419, 431, 439, 449, 461, 467, 487, 499, 509, 541, 557, 569, 577 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Partition of the positive integers:  A258036, A258037;

Corresponding partition of the primes: A258038, A258039.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

D(prime(k), k-1) = sum{(-1)^i prime(k-i)*C(k-i),i); i = 0..k-1}

EXAMPLE

D(prime(2), 1) = 3 - 2 > 0, so a(1) = prime(1) = 2;

D(prime(3), 2) = 5 - 2*3 + 2 > 0, so a(2) = prime(2) = 3;

D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0.

MATHEMATICA

u = Table[Prime[Range[k]], {k, 1, 1000}];

v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];

w1 = Flatten[Position[v, -1]] (* A258036 *)

w2 = Flatten[Position[v, 1]]  (* A258037 *)

p1 = Prime[w1]  (* A258038 *)

p2 = Prime[w2]  (* A258039 *)

CROSSREFS

Cf. A258036, A258037, A258038.

Sequence in context: A113239 A049553 A049595 * A107438 A211204 A023206

Adjacent sequences:  A258036 A258037 A258038 * A258040 A258041 A258042

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jun 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 08:10 EDT 2020. Contains 335626 sequences. (Running on oeis4.)