Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 14 2024 08:20:03
%S 2,3,5,11,17,23,31,41,47,53,61,71,79,89,101,103,109,127,137,149,157,
%T 167,173,181,193,199,227,233,241,257,269,277,283,307,313,331,347,353,
%U 367,379,389,401,419,431,439,449,461,467,487,499,509,541,557,569,577
%N Numbers prime(k) such that D(prime(k), k-1) > 0, where D( * , k-1) = (k-1)-st difference.
%C Partition of the positive integers: A258036, A258037;
%C Corresponding partition of the primes: A258038, A258039.
%H Clark Kimberling, <a href="/A258039/b258039.txt">Table of n, a(n) for n = 1..1000</a>
%F D(prime(k), k-1) = Sum_{i=0..k-1} (-1)^i*prime(k-i)*binomial(k-1,i). [corrected by _Jason Yuen_, Nov 13 2024]
%F a(n) = prime(A258037(n)). - _Jason Yuen_, Nov 13 2024
%e D(prime(2), 1) = 3 - 2 > 0, so a(1) = prime(1) = 2;
%e D(prime(3), 2) = 5 - 2*3 + 2 > 0, so a(2) = prime(2) = 3;
%e D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0.
%t u = Table[Prime[Range[k]], {k, 1, 1000}];
%t v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];
%t w1 = Flatten[Position[v, -1]] (* A258036 *)
%t w2 = Flatten[Position[v, 1]] (* A258037 *)
%t p1 = Prime[w1] (* A258038 *)
%t p2 = Prime[w2] (* A258039 *)
%Y Cf. A258036, A258037, A258038.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Jun 05 2015