login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258037 Numbers k such that D(prime(k), k-1) > 0, where D( * , k-1) = (k-1)-st difference. 4
1, 2, 3, 5, 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 27, 29, 31, 33, 35, 37, 39, 40, 42, 44, 46, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 102, 104, 106, 108, 110, 112, 113, 115, 117, 119, 121 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partition of the positive integers:  A258036, A258037;

Corresponding partition of the primes: A258038, A258039.

Conjecture:  all the terms of the difference sequence of A258037 belong to {1,2,3}.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

D(prime(k), k-1) = sum{(-1)^i prime(k-i)*C(k-i),i); i = 0..k-1}

EXAMPLE

D(prime(2), 1) = 3 - 2 > 0, so a(1) = 1;

D(prime(3), 2) = 5 - 2*3 + 2 > 0, so a(2) = 2;

D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0;

MATHEMATICA

u = Table[Prime[Range[k]], {k, 1, 1000}];

v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];

w1 = Flatten[Position[v, -1]] (* A258036 *)

w2 = Flatten[Position[v, 1]]  (* A258037 *)

p1 = Prime[w1]  (* A258038 *)

p2 = Prime[w2]  (* A258039 *)

CROSSREFS

Cf. A258036, A258038, A258039.

Sequence in context: A066935 A042943 A306466 * A186330 A153809 A004274

Adjacent sequences:  A258034 A258035 A258036 * A258038 A258039 A258040

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jun 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 14:50 EDT 2020. Contains 336381 sequences. (Running on oeis4.)