login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300598
a(n) = A300591(n) / n for n>=1.
2
1, 1, 9, 184, 6105, 285909, 17599855, 1366487208, 130312110537, 14977420657205, 2044343858148526, 327321396575462328, 60816978336055883851, 12988287586752637095951, 3161098207809674432144760, 870056671853543460441640960, 268957112246197632099231284121, 92799365448465489168470692401021, 35538203127994691420731763316052499, 15028828305943284874962308136851532840
OFFSET
1,3
COMMENTS
If G(x) satisfies: [x^n] exp (n^2 * G(x) ) = n^2 * [x^(n-1)] exp( n^2 * G(x) ) for n>=1, then G(x) equals the o.g.f. of A300591.
LINKS
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); (1/n)*polcoeff( log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A300591.
Sequence in context: A231726 A064332 A319798 * A189803 A216409 A171194
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved