|
|
A231726
|
|
Count of the first 10^n primes containing at least one 0's digit.
|
|
10
|
|
|
0, 9, 181, 2878, 38298, 442776, 4937680, 54997237, 604120810, 6420599395, 67512632285
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..11.
|
|
FORMULA
|
a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014
|
|
EXAMPLE
|
a(2)=9 because there are 9 primes not greater than 547 (the 100th prime) that contain a zero digit. Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509.
|
|
MATHEMATICA
|
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 0], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
|
|
CROSSREFS
|
Cf. A231726-A231790, A231792-A231796, A091634-A091643, A231412, A228413-A228421.
Sequence in context: A034240 A163132 A212704 * A064332 A319798 A300598
Adjacent sequences: A231723 A231724 A231725 * A231727 A231728 A231729
|
|
KEYWORD
|
more,nonn,base
|
|
AUTHOR
|
Robert Price, Nov 12 2013
|
|
STATUS
|
approved
|
|
|
|