|
|
A212704
|
|
a(n) = 9*n*10^(n-1).
|
|
13
|
|
|
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Main transitions in systems of n particles with spin 9/2.
Please, refer to the general explanation in A212697.
This particular sequence is obtained for base b=10, corresponding to spin S = (b-1)/2 = 9/2.
Number of 0 needed to write all numbers of n+1 digits. - Bruno Berselli, Jun 30 2014
Number of nonzero digits needed to write all integers from 1 up to 10^n - 1.
a(n) is a square iff n in { A016754 union A033583\{0} } (see formulas). (End)
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n*(b-1)*b^(n-1) with b=10.
G.f.: 9*x / (10*x-1)^2.
a(A016754(n)) = (3 * (2n+1) * 10^(2*n*(n+1)))^2.
a(A033583(n)) = (3 * n * 10^(5*n^2))^2. (End)
|
|
MATHEMATICA
|
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
|
|
PROG
|
(PARI) mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
(Python)
def a(n): return 9*n*10**(n-1)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|