login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212704
a(n) = 9*n*10^(n-1).
13
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000
OFFSET
1,1
COMMENTS
Main transitions in systems of n particles with spin 9/2.
Please, refer to the general explanation in A212697.
This particular sequence is obtained for base b=10, corresponding to spin S = (b-1)/2 = 9/2.
Number of 0 needed to write all numbers of n+1 digits. - Bruno Berselli, Jun 30 2014
Essentially the same as A113119. - Bernard Schott, Nov 15 2022
From Bernard Schott, Nov 22 2022: (Start)
Number of nonzero digits needed to write all integers from 1 up to 10^n - 1.
a(n) is a square iff n in { A016754 union A033583\{0} } (see formulas). (End)
LINKS
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
FORMULA
a(n) = n*(b-1)*b^(n-1) with b=10.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 9*x / (10*x-1)^2.
a(n) = 9*A053541(n). (End)
From Bernard Schott, Nov 14 2022: (Start)
a(n+1) - a(n) = 9*A081045(n).
a(n) = A113119(n) for n > 1.
a(n) = A033713(n+1) - A033713(n) = A033714(n+1) - A033714(n).
a(A016754(n)) = (3 * (2n+1) * 10^(2*n*(n+1)))^2.
a(A033583(n)) = (3 * n * 10^(5*n^2))^2. (End)
MATHEMATICA
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
(Python)
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
KEYWORD
nonn,easy
AUTHOR
Stanislav Sykora, May 25 2012
STATUS
approved