OFFSET
1,1
COMMENTS
Main transitions in systems of n particles with spin 9/2.
Please, refer to the general explanation in A212697.
This particular sequence is obtained for base b=10, corresponding to spin S = (b-1)/2 = 9/2.
Number of 0 needed to write all numbers of n+1 digits. - Bruno Berselli, Jun 30 2014
Essentially the same as A113119. - Bernard Schott, Nov 15 2022
From Bernard Schott, Nov 22 2022: (Start)
Number of nonzero digits needed to write all integers from 1 up to 10^n - 1.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..100
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Index entries for linear recurrences with constant coefficients, signature (20,-100).
FORMULA
a(n) = n*(b-1)*b^(n-1) with b=10.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 9*x / (10*x-1)^2.
a(n) = 9*A053541(n). (End)
From Bernard Schott, Nov 14 2022: (Start)
a(n+1) - a(n) = 9*A081045(n).
a(n) = A113119(n) for n > 1.
a(A016754(n)) = (3 * (2n+1) * 10^(2*n*(n+1)))^2.
a(A033583(n)) = (3 * n * 10^(5*n^2))^2. (End)
MATHEMATICA
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
PROG
(PARI) mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
(Python)
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stanislav Sykora, May 25 2012
STATUS
approved