The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163132 A trisection of A163129. 4
 9, 180, 2070, 17775, 125865, 773766, 4260645, 21453975, 100250100, 439479198, 1822654251, 7198716870, 27221451885, 98988000120, 347428124352, 1180620288702, 3894719205510, 12501561121560, 39124469772495 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS A163129 is defined by the g.f.: A(q) = exp( Sum_{n>=1} sigma(n) * 3*A038500(n) * q^n/n ), where A038500(n) = highest power of 3 dividing n. Trisections are related by: A(q) = T_0(q) + T_1(q) + T_2(q) where 3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091, which is the McKay-Thompson series of class 9B for Monster. LINKS G. C. Greubel, Table of n, a(n) for n = 2..1002 EXAMPLE G.f.: T_2(q) = 9*q^2 + 180*q^5 + 2070*q^8 + 17775*q^11 + 125865*q^14 + ... Terms are divisible by 9: T_2/9 = [1, 20, 230, 1975, 13985, 85974, 473405, 2383775, 11138900, ...]. MATHEMATICA eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, 3*nmax + 1}]], {q, 0, nmax}], 3*n + 2]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *) PROG (PARI) {a(n)=local(L=sum(m=1, 3*n+2, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^(3*n+2))); polcoeff(exp(L), 3*n+2)} CROSSREFS Cf. A163129, A163130 (T_0), A163131 (T_1), A058091, A038500. Sequence in context: A304402 A034221 A034240 * A212704 A231726 A064332 Adjacent sequences:  A163129 A163130 A163131 * A163133 A163134 A163135 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 21 2009 EXTENSIONS Comment corrected by Paul D. Hanna, Jul 24 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 05:06 EST 2022. Contains 350410 sequences. (Running on oeis4.)