login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163129
G.f.: A(q) = exp( Sum_{n>=1} sigma(n) * 3*A038500(n) * q^n/n ), where A038500(n) = highest power of 3 dividing n.
5
1, 3, 9, 30, 75, 180, 441, 969, 2070, 4431, 8964, 17775, 35094, 66975, 125865, 235053, 429096, 773766, 1386027, 2442372, 4260645, 7384578, 12640320, 21453975, 36192519, 60454713, 100250100, 165311094, 270391857, 439479198, 710631279
OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
FORMULA
Define trisections by: A(q) = T_0(q) + T_1(q) + T_2(q), then:
3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091,
which is the McKay-Thompson series of class 9B for Monster.
G.f.: 1/Product_{n>=0} R(q^(3^n))^(3^n) where R(q) = E(q)^3/E(q^3) and E(q) = Product_{k>=1} (1 - q^k). - Joerg Arndt, Aug 03 2011
EXAMPLE
G.f.: A(q) = 1 + 3*q + 9*q^2 + 30*q^3 + 75*q^4 + 180*q^5 + 441*q^6 + ...
log(A(q)) = 3*q + 9*q^2/2 + 36*q^3/3 + 21*q^4/4 + 18*q^5/5 + 108*q^6/6 + ...
Define TRISECTIONS:
T_0(q) = 1 + 30*q^3 + 441*q^6 + 4431*q^9 + 35094*q^12 + ...
T_1(q) = 3*q + 75*q^4 + 969*q^7 + 8964*q^10 + 66975*q^13 + ...
T_2(q) = 9*q^2 + 180*q^5 + 2070*q^8 + 17775*q^11 + 125865*q^14 + ...
then:
3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091:
T9B(q) = 1/q + 5*q^2 - 7*q^5 + 3*q^8 + 15*q^11 - 32*q^14 + 9*q^17 + 58*q^20 + ...
MATHEMATICA
nmax = 100; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], q] (* G. C. Greubel, Jul 03 2018, edited by Vaclav Kotesovec, Oct 20 2020 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, n, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
CROSSREFS
Cf. trisections: A163130 (T_0), A163131 (T_1), A163132 (T_2).
Cf. A058091, A038500, A162584 (variant).
Sequence in context: A138938 A154147 A179545 * A074003 A344266 A078844
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2009, Jul 24 2009
STATUS
approved