login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(q) = exp( Sum_{n>=1} sigma(n) * 3*A038500(n) * q^n/n ), where A038500(n) = highest power of 3 dividing n.
5

%I #22 Oct 20 2020 08:16:07

%S 1,3,9,30,75,180,441,969,2070,4431,8964,17775,35094,66975,125865,

%T 235053,429096,773766,1386027,2442372,4260645,7384578,12640320,

%U 21453975,36192519,60454713,100250100,165311094,270391857,439479198,710631279

%N G.f.: A(q) = exp( Sum_{n>=1} sigma(n) * 3*A038500(n) * q^n/n ), where A038500(n) = highest power of 3 dividing n.

%H Vaclav Kotesovec, <a href="/A163129/b163129.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%F Define trisections by: A(q) = T_0(q) + T_1(q) + T_2(q), then:

%F 3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091,

%F which is the McKay-Thompson series of class 9B for Monster.

%F G.f.: 1/Product_{n>=0} R(q^(3^n))^(3^n) where R(q) = E(q)^3/E(q^3) and E(q) = Product_{k>=1} (1 - q^k). - _Joerg Arndt_, Aug 03 2011

%e G.f.: A(q) = 1 + 3*q + 9*q^2 + 30*q^3 + 75*q^4 + 180*q^5 + 441*q^6 + ...

%e log(A(q)) = 3*q + 9*q^2/2 + 36*q^3/3 + 21*q^4/4 + 18*q^5/5 + 108*q^6/6 + ...

%e Define TRISECTIONS:

%e T_0(q) = 1 + 30*q^3 + 441*q^6 + 4431*q^9 + 35094*q^12 + ...

%e T_1(q) = 3*q + 75*q^4 + 969*q^7 + 8964*q^10 + 66975*q^13 + ...

%e T_2(q) = 9*q^2 + 180*q^5 + 2070*q^8 + 17775*q^11 + 125865*q^14 + ...

%e then:

%e 3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091:

%e T9B(q) = 1/q + 5*q^2 - 7*q^5 + 3*q^8 + 15*q^11 - 32*q^14 + 9*q^17 + 58*q^20 + ...

%t nmax = 100; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], q] (* _G. C. Greubel_, Jul 03 2018, edited by _Vaclav Kotesovec_, Oct 20 2020 *)

%o (PARI) {a(n)=local(L=sum(m=1, n, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

%Y Cf. trisections: A163130 (T_0), A163131 (T_1), A163132 (T_2).

%Y Cf. A058091, A038500, A162584 (variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 21 2009, Jul 24 2009