login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358741
Expansion of Sum_{k>=0} k! * ( k * x/(1 - x) )^k.
2
1, 1, 9, 179, 6655, 400581, 35530421, 4357960999, 706230728379, 146116931998025, 37577989723572001, 11758017370126904091, 4398121660346674034039, 1938019214715102033590029, 993580299268226843514372045, 586357970017371399763899232271
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} k! * k^k * binomial(n-1,k-1) for n > 0.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Feb 18 2023
MATHEMATICA
nmax = 20; CoefficientList[1 + Series[Sum[k! * (k * x/(1 - x))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 18 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*(k*x/(1-x))^k))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, k!*k^k*binomial(n-1, k-1)));
CROSSREFS
Cf. A355494.
Sequence in context: A009009 A220267 A304402 * A034221 A034240 A163132
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 29 2022
STATUS
approved