login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009009
Expansion of e.g.f.: 1/cos(sinh(x)) (even-indexed coefficients only).
5
1, 1, 9, 177, 6545, 387649, 33646041, 4025701617, 635120351777, 127753094128897, 31911422805749673, 9691219439564235441, 3516474983468155702193, 1502487398886128051614273, 746659439867912626958616441, 427003792367575880943003380721
OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..200 (terms 0..50 from Vincenzo Librandi)
FORMULA
a(n) ~ (2*n)! * 4 / (sqrt(4+Pi^2) * (log((Pi+sqrt(4+Pi^2))/2))^(2*n+1)). - Vaclav Kotesovec, Jan 22 2015
MATHEMATICA
f[x_] := Sec@Sinh[x]; Table[Derivative[2*n][f][0], {n, 0, 15}] (* Arkadiusz Wesolowski, Aug 18 2012 *)
With[{nn=30}, Take[CoefficientList[Series[1/Cos[Sinh[x]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 09 2012 *)
PROG
(PARI) x='x+O('x^50); v=Vec(serlaplace(1/cos(sinh(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 21 2018
CROSSREFS
Sequence in context: A232694 A193443 A003711 * A220267 A304402 A358741
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
a(14), a(15) from Arkadiusz Wesolowski, Aug 18 2012
STATUS
approved