OFFSET
0,3
COMMENTS
Sum_{n>=0} a(n)/(2*n)! = exp(1/2 + 2*sqrt(3)*Pi/27) = 2.4671571229001...
FORMULA
E.g.f.: exp(L(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!,
where L(x) = -1/2 + (8+x^2)/(4-x^2)^2 + 12*x*atan(x/sqrt(4-x^2))/sqrt((4-x^2)^5) from a formula given in A121839.
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 9*x^4/4! + 177*x^6/6! + 6081*x^8/8! + 320625*x^10/10! + 23901993*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
log(A(x)) = x^2/2 + x^4/4 + x^6/10 + x^8/28 + x^10/84 + x^12/264 + x^14/858 + x^16/2860 +...+ (n+1)*x^(2*n)/(2*C(2*n,n)) +...
PROG
(PARI) {a(n)=(2*n)!*polcoeff(exp(sum(m=1, n, (m+1)*x^(2*m)/binomial(2*m, m)/2)+O(x^(2*n+1))), 2*n)}
(PARI) /* Using formula for e.g.f. = exp(L(x)): */
{a(n)=local(Ox=O(x^(2*n+1)), L=-1/2 + (8+x^2)/(4-x^2 +Ox)^2 + 12*x*atan(x/sqrt(4-x^2 +Ox))/sqrt((4-x^2 +Ox)^5)); (2*n)!*polcoeff(exp(L), 2*n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved