login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193443
E.g.f.: exp( Sum_{n>=1} x^(2*n)/(2*A000108(n)) ) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where A000108 is the Catalan numbers.
3
1, 1, 9, 177, 6081, 320625, 23901993, 2382903873, 305213701185, 48729724204833, 9471295552801545, 2198860046959656465, 600311814859681301889, 190227653770262659729425, 69194247433728324962214825, 28616922449430718198313413665, 13345389352004839017903164910465
OFFSET
0,3
COMMENTS
Sum_{n>=0} a(n)/(2*n)! = exp(1/2 + 2*sqrt(3)*Pi/27) = 2.4671571229001...
FORMULA
E.g.f.: exp(L(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!,
where L(x) = -1/2 + (8+x^2)/(4-x^2)^2 + 12*x*atan(x/sqrt(4-x^2))/sqrt((4-x^2)^5) from a formula given in A121839.
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 9*x^4/4! + 177*x^6/6! + 6081*x^8/8! + 320625*x^10/10! + 23901993*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
log(A(x)) = x^2/2 + x^4/4 + x^6/10 + x^8/28 + x^10/84 + x^12/264 + x^14/858 + x^16/2860 +...+ (n+1)*x^(2*n)/(2*C(2*n,n)) +...
PROG
(PARI) {a(n)=(2*n)!*polcoeff(exp(sum(m=1, n, (m+1)*x^(2*m)/binomial(2*m, m)/2)+O(x^(2*n+1))), 2*n)}
(PARI) /* Using formula for e.g.f. = exp(L(x)): */
{a(n)=local(Ox=O(x^(2*n+1)), L=-1/2 + (8+x^2)/(4-x^2 +Ox)^2 + 12*x*atan(x/sqrt(4-x^2 +Ox))/sqrt((4-x^2 +Ox)^5)); (2*n)!*polcoeff(exp(L), 2*n)}
CROSSREFS
Cf. A193441, A193442, A000108 (Catalan), A121839.
Sequence in context: A141363 A157774 A232694 * A003711 A009009 A220267
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved