login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009010
Expansion of e.g.f.: 1/cos(tan(x)) (even-indexed coefficients only).
7
1, 1, 13, 397, 22265, 1996569, 262056837, 47378857957, 11289999097969, 3429209143916337, 1293273763150662781, 592937704157794933821, 324791587492604492427881, 209490216975221386279672393, 157153880464155360205476452597
OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..200 (terms 0..50 from Vincenzo Librandi)
FORMULA
a(n) ~ (2*n)! * 8 / ((4+Pi^2) * (arctan(Pi/2))^(2*n+1)). - Vaclav Kotesovec, Jan 22 2015
MATHEMATICA
f[x_] := Sec@Tan[x]; Table[Derivative[2*n][f][0], {n, 0, 14}] (* Arkadiusz Wesolowski, Aug 18 2012 *)
nn = 20; Table[(CoefficientList[Series[Sec[Tan[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 22 2015 *)
PROG
(PARI) x='x+O('x^50); v=Vec(serlaplace(1/cos(tan(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 21 2018
CROSSREFS
Sequence in context: A275651 A203972 A013527 * A171196 A286189 A280553
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
a(14) from Arkadiusz Wesolowski, Aug 18 2012
STATUS
approved