Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #65 Feb 28 2024 02:09:58
%S 9,180,2700,36000,450000,5400000,63000000,720000000,8100000000,
%T 90000000000,990000000000,10800000000000,117000000000000,
%U 1260000000000000,13500000000000000,144000000000000000,1530000000000000000,16200000000000000000,171000000000000000000
%N a(n) = 9*n*10^(n-1).
%C Main transitions in systems of n particles with spin 9/2.
%C Please, refer to the general explanation in A212697.
%C This particular sequence is obtained for base b=10, corresponding to spin S = (b-1)/2 = 9/2.
%C Number of 0 needed to write all numbers of n+1 digits. - _Bruno Berselli_, Jun 30 2014
%C Essentially the same as A113119. - _Bernard Schott_, Nov 15 2022
%C From _Bernard Schott_, Nov 22 2022: (Start)
%C Number of nonzero digits needed to write all integers from 1 up to 10^n - 1.
%C a(n) is a square iff n in { A016754 union A033583\{0} } (see formulas). (End)
%H Stanislav Sykora, <a href="/A212704/b212704.txt">Table of n, a(n) for n = 1..100</a>
%H Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,-100).
%F a(n) = n*(b-1)*b^(n-1) with b=10.
%F From _R. J. Mathar_, Oct 15 2013: (Start)
%F G.f.: 9*x / (10*x-1)^2.
%F a(n) = 9*A053541(n). (End)
%F From _Bernard Schott_, Nov 14 2022: (Start)
%F a(n+1) - a(n) = 9*A081045(n).
%F a(n) = A113119(n) for n > 1.
%F a(n) = A033713(n+1) - A033713(n) = A033714(n+1) - A033714(n).
%F a(A016754(n)) = (3 * (2n+1) * 10^(2*n*(n+1)))^2.
%F a(A033583(n)) = (3 * n * 10^(5*n^2))^2. (End)
%t Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
%t Array[9 # 10^(# - 1) &, 18] (* _Michael De Vlieger_, Nov 18 2019 *)
%o (PARI) mtrans(n, b) = n*(b-1)*b^(n-1);
%o a(n) = mtrans(n, 10);
%o (Python)
%o def a(n): return 9*n*10**(n-1)
%o print([a(n) for n in range(1, 21)]) # _Michael S. Branicky_, Nov 14 2022
%Y Cf. A016754, A033583, A033713, A033714, A053541, A081045, A113119.
%Y Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212702, A212703 (for b=2..9).
%K nonn,easy
%O 1,1
%A _Stanislav Sykora_, May 25 2012