The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076577 Sum of squares of divisors d of n such that n/d is odd. 10
 1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). FORMULA G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)). b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p. a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157). b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003 Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015 L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016 Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019 EXAMPLE G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ... MAPLE a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),      (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)), t=ifactors(n)[2]): map(a, [\$1..100]); # Robert Israel, Jul 05 2016 MATHEMATICA a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *) Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *) f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *) PROG (PARI) a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014 CROSSREFS Cf. A001227, A002131, A001157, A050999. Glaisher's Delta'_i (i=0..12): A001227, A002131, A076577, A007331, A285989, A096960, A321817, A096961, A321818, A096962, A321819, A096963, A321820 Sequence in context: A054901 A019574 A095273 * A008148 A089340 A175703 Adjacent sequences:  A076574 A076575 A076576 * A076578 A076579 A076580 KEYWORD mult,nonn AUTHOR Vladeta Jovovic, Oct 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 16:32 EDT 2022. Contains 356077 sequences. (Running on oeis4.)