login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152990
Sum of proper divisors minus the number of proper divisors of Fibonacci number A000045(n).
4
0, 0, 0, 0, 0, 4, 0, 8, 17, 14, 0, 245, 0, 40, 499, 542, 0, 2801, 148, 5316, 6771, 286, 0, 110809, 18032, 752, 124327, 155934, 0, 1310617, 2972, 1213164, 1821955, 5166, 2697336, 33280689, 506376, 1416024, 32030851, 106878198, 62156, 295708841, 0
OFFSET
1,6
COMMENTS
Note that if a(n) != 0 then Fibonacci number A000045(n) is a composite number (A002808), otherwise A000045(n) is a noncomposite number (A008578). See A152770.
LINKS
Georg Fischer, Table of n, a(n) for n = 1..80 [first 78 terms from B. D. Swan]
FORMULA
a(n) = A000203(A000045(n)) - A000005(A000045(n)) - n + 1 = A001065(A000045(n)) - A032741(A000045(n)) = A152770(A000045(n)).
EXAMPLE
a(8)=8 because Fibonacci(8)=21, the proper divisors of 21 are 1,3 and 7; consequently, a(8) = 1 + 3 + 7 - 3 = 8. - Emeric Deutsch, Jan 02 2009
MAPLE
with(combinat): with(numtheory): seq(sigma(fibonacci(n))-fibonacci(n)-tau(fibonacci(n))+1, n = 1 .. 45); # Emeric Deutsch, Jan 02 2009
PROG
(Magma) [DivisorSigma(1, f)-f-DivisorSigma(0, f)+1 where f is Fibonacci(n):n in [1..43] ]; // Marius A. Burtea, Feb 18 2020
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 20 2008
EXTENSIONS
Extended by Emeric Deutsch, Jan 02 2009
a(79)-a(80) in b-file corrected by Georg Fischer, Feb 18 2020
STATUS
approved