login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073387
Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.
16
1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
OFFSET
0,2
COMMENTS
The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(2+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
T(n, k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length for the letters 0,1. - Milan Janjic, Jan 14 2017
LINKS
Wolfdieter Lang, First 10 rows.
FORMULA
T(n, k) = 2*(p(k-1, n-k)*(n-k+1)*T(n-k+1) + q(k-1, n-k)*(n-k+2)*T(n-k))/(k!*12^k), n >= k >= 1, with T(n) = T(n, k=0) = A002605(n), else 0; p(m, n) = Sum_{j=0..m} A(m, j)*n^(m-j) and q(m, n) = Sum_{j=0..m} B(m, j)*n^(m-j) with the number triangles A(k, m) = A073403(k, m) and B(k, m) = A073404(k, m).
T(n, k) = Sum_{j=0..floor((n-k)/2)} 2^(n-k-j)*binomial(n-j, k)*binomial(n-k-j, j) if n > k, else 0.
T(n, k) = ((n-k+1)*T(n, k-1) + 2*(n+k)*T(n-1, k-1))/(6*k), n >= k >= 1, T(n, 0) = A002605(n+1), else 0.
Sum_{k=0..n} T(n, k) = A007482(n).
G.f. for column m (without leading zeros): 1/(1-2*x*(1+x))^(m+1), m>=0.
T(n,k) = 2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2) for n>=1. - Peter Luschny, Apr 25 2016
From G. C. Greubel, Oct 03 2022: (Start)
T(n, n-1) = A005843(n), n >= 1.
T(n, n-2) = 2*A005563(n-1), n >= 2.
T(n, n-3) = 4*A159920(n-1), n >= 2.
Sum_{k=0..n} (-1)^k*T(n, k) = A001045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1). (End)
EXAMPLE
Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
1;
2, 1;
6, 4, 1;
16, 16, 6, 1;
44, 56, 30, 8, 1;
120, 188, 128, 48, 10, 1;
328, 608, 504, 240, 70, 12, 1;
896, 1920, 1872, 1080, 400, 96, 14, 1;
MAPLE
T := (n, k) -> `if`(n=0, 1, 2^(n-k)*binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016
MATHEMATICA
T[n_, k_]:=T[n, k]=Sum[2^(n-k-j)*Binomial[n-j, k]*Binomial[n-k-j, j], {j, 0, (n-k)/2}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
PROG
(Magma)
A073387:= func< n, k | (&+[2^(n-k-j)*Binomial(n-j, k)*Binomial(n-k-j, j): j in [0..Floor((n-k)/2)]]) >;
[A073387(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
(SageMath)
def A073387(n, k): return sum(2^(n-k-j)*binomial(n-j, k)*binomial(n-k-j, j) for j in range(((n-k+2)//2)))
flatten([[A073387(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022
CROSSREFS
Cf. A002605, A007482 (row sums), A053121, A073403, A073404.
Columns: A002605 (k=0), A073388 (k=1), A073389 (k=2), A073390 (k=3), A073391 (k=4), A073392 (k=5), A073393 (k=6), A073394 (k=7), A073397 (k=8), A073398 (k=9).
Sequence in context: A269505 A269479 A118040 * A259099 A125693 A094527
KEYWORD
nonn,easy,tabl,changed
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved