login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073392
Fifth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
3
1, 12, 96, 616, 3444, 17472, 82432, 367488, 1565280, 6421376, 25525248, 98773248, 373450112, 1383674880, 5036089344, 18041821184, 63727070976, 222249968640, 766234140672, 2614196680704, 8834194123776
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-48,40,180,-288,-384,576,720,-320,-768,-384,-64).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073391(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+5, 5)*binomial(n-k, k)*2^(n-k).
a(n) = (n+4)*(n+8)*((19*n^2 + 158*n + 275)*(n+1)*U(n+1) + 2*(7*n^2 + 52*n + 65)*(n+2)*U(n))/(2^6*3^4*5), with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^6.
EXAMPLE
x^6 + 12*x^7 + 96*x^8 + 616*x^9 + 3444*x^10 + ... + 222249968640*x^23 + 766234140672*x^24 + 2614196680704*x^25 + 8834194123776*x^26 + ... - Zerinvary Lajos, Jun 03 2009
MATHEMATICA
CoefficientList[Series[1/(1-2*x*(1+x))^6, {x, 0, 30}], x] (* Harvey P. Dale, May 12 2018 *)
PROG
(Sage) taylor( 1/(1-2*x-2*x^2)^6, x, 0, 30).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 04 2022
(GAP) List([0..30], n->2^n*Sum([0..Int(n/2)], k->Binomial(n-k+5, 5)*Binomial(n-k, k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^6 )); // G. C. Greubel, Oct 04 2022
CROSSREFS
Sixth (m=5) column of triangle A073387.
Sequence in context: A121627 A138162 A264418 * A038845 A204623 A270568
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved